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1. Introduction

In this article we consider boundary value problems associated with fields inside heterogeneous materials made from
two power-law materials. The geometry of the composite is periodic and is specified by the indicator function of the sets
occupied by each of the materials. The indicator functions of material one and two are denoted by χ1 and χ2, where
χ1(y) = 1 in material one and is zero outside and χ2(y) = 1 − χ1(y). The constitutive law for the heterogeneous medium
is described by A : R

n × R
n → R

n ,

A(y, ξ) = σ(y)|ξ |p(y)−2ξ, (1.1)

with σ(y) = χ1(y)σ1 +χ2(y)σ2, and p(y) = χ1(y)p1 +χ2(y)p2, periodic in y, with unit period cell Y = (0,1)n . This simple
constitutive model is used in the mathematical description of many physical phenomena including plasticity [17,18,20,10],
nonlinear dielectrics [9,8,12,21,22], and fluid flow [19,2]. We study the problem of periodic homogenization associated with
the solutions uε to the problems

−div

(
A

(
x

ε
,∇uε

))
= f on Ω, uε ∈ W 1,p1

0 (Ω), (1.2)

where Ω is a bounded open subset of R
n , 2 � p1 � p2, f ∈ W −1,q2 (Ω), and 1/p1 + 1/q2 = 1. The differential operator

appearing on the left-hand side of (1.2) is commonly referred to as the pε(x)-Laplacian. For the case at hand, the exponents
p(x) and coefficients σ(x) are taken to be simple functions. Because the level sets associated with these functions can
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be quite general and irregular they are referred to as rough exponents and coefficients. In this context all solutions are
understood in the usual weak sense [26].

One of the basic problems in homogenization theory is to understand the asymptotic behavior as ε → 0, of the solutions
uε to the problems (1.2). It was proved in [26] that {uε}ε>0 converges weakly in W 1,p1(Ω) to the solution u of the
homogenized problem

−div
(
b(∇u)

) = f on Ω, u ∈ W 1,p1
0 (Ω), (1.3)

where the monotone map b : R
n → R

n (independent of f and Ω) can be obtained by solving an auxiliary problem for the
operator (1.2) on a periodicity cell.

The notion of homogenization is intimately tied to the Γ -convergence of a suitable family of energy functionals Iε as
ε → 0 [5,26]. Here the connection is natural in that the family of boundary value problems (1.3) corresponds to the Euler
equations of the associated energy functionals Iε and the solutions uε are their minimizers. The homogenized solution is
precisely the minimizer of the Γ -limit of the sequence {Iε}ε>0. The connections between Γ limits and homogenization for
the power-law materials studied here can be found in [26]. The explicit formula for the Γ -limit of the associated energy
functionals for layered materials was obtained recently in [16].

Homogenization theory relates the average behavior seen at large length scales to the underlying heterogeneous struc-
ture. It allows one to approximate {∇uε}ε>0 in terms of ∇u, where u is the solution of the homogenized problem (1.3). The
homogenization result given in [26] shows that the average of the error incurred in this approximation of ∇uε decays to 0.

On the other hand it is well known [11] that the presence of large local fields either electric or mechanical often
precedes the onset of material failure. For composite materials the presence of the heterogeneity can amplify the applied
load and generate local fields with very high intensities. The goal of the analysis presented here is to develop tools for
quantifying the effect of load transfer between length scales inside heterogeneous media. In this article we provide methods
for quantitatively measuring the excursions of local fields generated by applied loads. We present a new corrector result
that delivers an approximation to ∇uε up to an error that converges to zero strongly in the norm. Our approach delivers
strong approximations for the gradients inside each phase, see Section 2.2.1.

The strong approximations are used to develop new tools that provide lower bounds on the local gradient field intensity
inside micro-structured media. The bounds are expressed in terms of the Lq norms of gradients of the solutions of the local
corrector problems. These results provide a lower bound on the amplification of the macroscopic (average) gradient field
by the micro-structure. The bounds are shown to hold for every q for which the gradient of the corrector is Lq integrable,
see Section 2.2.2. The critical values of q for which these moments diverge provide lower bounds on the Lq integrability
of the gradients ∇uε when ε is sufficiently small. In [13], similar lower bounds are established for field concentrations for
mixtures of linear electrical conductors in the context of two scale convergence.

The corrector results are presented for layered materials and for dispersions of inclusions embedded inside a host
medium. For the dispersed micro-structures the included material is taken to have the lower power-law exponent than
that of the host phase. For both of these cases it is shown that the homogenized solution lies in W 1,p2

0 (Ω). We use this
higher order integrability to provide an algorithm for building correctors and construct a sequence of strong approximations
to the gradients inside each material, see Theorem 2.6. When the host phase has a lower power-law exponent than the
included phase one can only conclude that the homogenized solution lies in W 1,p1

0 (Ω) and the techniques developed here
do not apply.

The earlier work of [6] provides the corrector theory for homogenization of monotone operators that in our case applies
to composite materials made from constituents having the same power-law growth but with rough coefficients σ(x). The
corrector theory for monotone operators with uniform power-law growth is developed further in [7], where it is used to
extend multi-scale finite element methods to nonlinear equations for stationary random media. Recent work considers the
homogenization of pε(x)-Laplacian boundary value problems for smooth exponential functions pε(x) uniformly converg-
ing to a limit function p0(x) [1]. There the convergence of the family of solutions for these homogenization problems is
expressed in the topology of L p0(·)(Ω) [1].

The paper is organized as follows. In Section 2, we state the problem and formulate the main results. Section 3 contains
the proof of the properties of the homogenized operator. Section 4 is devoted to proving the higher order integrability of
the homogenized solution. Section 5 contains lemmas and integral inequalities for the correctors used to prove the main
results. Section 6 contains the proof of the main results.

2. Statement of the problem and main results

2.1. Notation

In this paper we consider two nonlinear power-law materials periodically distributed inside a domain Ω ⊂ R
n . The

periodic mixture is described as follows. We introduce the unit period cell Y = (0,1)n of the micro-structure. Let F be
an open subset of Y of material one, with smooth boundary ∂ F , such that F ⊂ Y . The function χ1(y) = 1 inside F and
0 outside and χ2(y) = 1 − χ1(y). We extend χ1(y) and χ2(y) by periodicity to R

n and the ε-periodic mixture inside Ω

is described by the oscillatory characteristic functions χε(x) = χ1(x/ε) and χε(x) = χ2(x/ε). Here we will consider the
1 2
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Fig. 1. Unit cell: Dispersed micro-structure.

Fig. 2. Unit cell: Layered material.

case where F is given by a simply connected inclusion embedded inside a host material (see Fig. 1). A distribution of such
inclusions is commonly referred to as a periodic dispersion of inclusions.

In this article we also consider layered materials. For this case the representative unit cell consists of a layer of material
one, denoted by R1, sandwiched between layers of material two, denoted by R2. The interior boundary of R1 is denoted
by Γ . Here χ1(y) = 1 for y ∈ R1 and 0 in R2, and χ2(y) = 1 − χ1(y) (see Fig. 2).

On the unit cell Y , the constitutive law for the nonlinear material is given by (1.1) with exponents p1 and p2 satisfying
2 � p1 � p2. Their Hölder conjugates are denoted by q2 = p1/(p1 − 1) and q1 = p2/(p2 − 1) respectively. For i = 1,2,
W 1,pi

per (Y ) denotes the set of all functions u ∈ W 1,pi (Y ) with mean value zero that have the same trace on the opposite

faces of Y . Each function u ∈ W 1,pi
per (Y ) can be extended by periodicity to a function of W 1,pi

loc (Rn).
The Euclidean norm and the scalar product in R

n are denoted by | · | and (·,·), respectively. If A ⊂ R
n , |A| denotes the

Lebesgue measure and χA(x) denotes its characteristic function.
The constitutive law for the ε-periodic composite is described by Aε(x, ξ) = A(x/ε, ξ), for every ε > 0, for every x ∈ Ω ,

and for every ξ ∈ R
n .

A calculation shows [3] that there exist constants C1, C2 > 0 such that for almost every x ∈ R
n and for every ξ ∈ R

n ,
A satisfies the following:

(1) For all ξ ∈ R
n , A(·, ξ) is Y -periodic and Lebesgue measurable.

(2) |A(y,0)| = 0 for all y ∈ R
n .

(3) Continuity∣∣A(y, ξ1) − A(y, ξ2)
∣∣ � C1

[
χ1(y)|ξ1 − ξ2|

(
1 + |ξ1| + |ξ2|

)p1−2 + χ2(y)|ξ1 − ξ2|
(
1 + |ξ1| + |ξ2|

)p2−2]
. (2.1)

(4) Monotonicity

(
A(y, ξ1) − A(y, ξ2), ξ1 − ξ2

)
� C2

(
χ1(y)|ξ1 − ξ2|p1 + χ2(y)|ξ1 − ξ2|p2

)
. (2.2)

2.2. Dirichlet boundary value problem

We shall consider the following Dirichlet boundary value problem{
−div

(
Aε(x,∇uε)

) = f on Ω,

uε ∈ W 1,p1
0 (Ω),

(2.3)

where f ∈ W −1,q2 (Ω).
The following homogenization result holds.

Theorem 2.1 (Homogenization theorem). (See [26].) As ε → 0, the solutions uε of (2.3) converge weakly to u in W 1,p1(Ω), where u
is the solution of

−div
(
b(∇u)

) = f on Ω, (2.4)

u ∈ W 1,p1(Ω); (2.5)
0
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and the function b : R
n → R

n is defined for all ξ ∈ R
n by

b(ξ) =
∫
Y

A
(

y, p(y, ξ)
)

dy, (2.6)

where p : R
n × R

n → R
n is defined by

p(y, ξ) = ξ + ∇υξ (y), (2.7)

where υξ is the solution to the cell problem:⎧⎪⎪⎨
⎪⎪⎩

∫
Y

(
A(y, ξ + ∇υξ ),∇w

)
dy = 0, for every w ∈ W 1,p1

per (Y ),

υξ ∈ W 1,p1
per (Y ).

(2.8)

Remark 2.2. The following a priori bound is satisfied

sup
ε>0

(∫
Ω

χε
1 (x)

∣∣∇uε(x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣∇uε(x)
∣∣p2 dx

)
� C < ∞, (2.9)

where C does not depend on ε . The proof of this bound is given in Lemma 5.5.

Remark 2.3. The function b, defined in (2.6), satisfies the following properties for every ξ1, ξ2 ∈ R
n .

(1) Continuity: There exists a positive constant C1 such that

∣∣b(ξ1) − b(ξ2)
∣∣ � C1

[|ξ1 − ξ2|
1

p1−1
(
1 + |ξ1|p1 + |ξ2|p1 + |ξ1|p2 + |ξ2|p2

) p1−2
p1−1

+ |ξ1 − ξ2|
1

p2−1
(
1 + |ξ1|p1 + |ξ2|p1 + |ξ1|p2 + |ξ2|p2

) p2−2
p2−1

]
. (2.10)

(2) Monotonicity: There exists a positive constant C2 such that

(
b(ξ1) − b(ξ2), ξ1 − ξ2

)
� C2

(∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

)

� 0. (2.11)

Properties (2.10) and (2.11) are proved in Section 3.

Remark 2.4. Since the solution υξ of (2.8) can be extended by periodicity to a function of W 1,p1
loc (Rn), then (2.8) is equivalent

to −div(A(y, ξ + ∇υξ (y))) = 0 over D ′(Rn), i.e.,

−div
(

A
(

y, p(y, ξ)
)) = 0 in D ′(

R
n) for every ξ ∈ R

n. (2.12)

Moreover, by (2.8), we have∫
Y

(
A
(

y, p(y, ξ)
)
, p(y, ξ)

)
dy =

∫
Y

(
A
(

y, p(y, ξ)
)
, ξ

)
dy = (

b(ξ), ξ
)
. (2.13)

For ε > 0, define pε : R
n × R

n → R
n by

pε(x, ξ) = p

(
x

ε
, ξ

)
= ξ + ∇υξ

(
x

ε

)
, (2.14)

where υξ is the unique solution of (2.8). The functions p and pε are easily seen to have the following properties

p(·, ξ) is Y -periodic and pε(x, ξ) is ε-periodic in x, (2.15)∫
Y

p(y, ξ)dy = ξ, (2.16)

pε(·, ξ) ⇀ ξ in Lp1
(
Ω;R

n) as ε → 0, (2.17)
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p(y,0) = 0 for almost every y, (2.18)

A

( ·
ε

, pε(·, ξ)

)
⇀ b(ξ) in Lq2

(
Ω;R

n) as ε → 0. (2.19)

We now state the higher order integrability properties of the homogenized solution for periodic dispersions of inclusions
and layered micro-geometries.

Theorem 2.5. Given a periodic dispersion of inclusions or a layered material then the solution u of (2.4) belongs to W 1,p2
0 (Ω).

The proof of this theorem is given in Section 4.

2.2.1. Statement of the corrector theorem
We now describe the family of correctors that provide a strong approximation of the sequence {χε

i ∇uε}ε>0 in the
L pi (Ω,R

n) norm. We denote the rescaled period cell with side length ε > 0 by Yε and write Y i
ε = εi + Yε , where i ∈ Z

n . In
what follows it is convenient to define the index set Iε = {i ∈ Z

n: Y i
ε ⊂ Ω}. For ϕ ∈ L p2 (Ω;R

n), we define the local average
operator Mε associated with the partition Y i

ε , i ∈ Iε by

Mε(ϕ)(x) =
{∑

i∈Iε χY i
ε
(x) 1

|Y i
ε |

∫
Y i

ε
ϕ(y)dy, if x ∈ ⋃

i∈Iε Y i
ε,

0, if x ∈ Ω \ ⋃
i∈Iε Y i

ε .
(2.20)

The family Mε has the following properties:

(1) For i = 1,2, ‖Mε(ϕ) − ϕ‖Lpi (Ω;Rn) → 0 as ε → 0 (see [23]).
(2) Mε(ϕ) → ϕ a.e. on Ω (see [23]).
(3) From Jensen’s inequality we have ‖Mε(ϕ)‖Lpi (Ω;Rn) � ‖ϕ‖Lpi (Ω;Rn) , for every ϕ ∈ L p2(Ω;R

n) and i = 1,2.

The strong approximation to the sequence {χε
i ∇uε}ε>0 is given by the following corrector theorem.

Theorem 2.6 (Corrector theorem). Let f ∈ W −1,q2 (Ω), let uε be the solutions to the problem (2.3), and let u be the solution to problem
(2.4). Then, for periodic dispersions of inclusions and for layered materials, we have∫

Ω

∣∣χε
i (x)pε

(
x, Mε(∇u)(x)

) − χε
i (x)∇uε(x)

∣∣pi dx → 0, (2.21)

as ε → 0, for i = 1,2.

The proof of Theorem 2.6 is given in Section 6.1.

2.2.2. Lower bounds on the local amplification of the macroscopic field
We display lower bounds on the Lq norm of the gradient fields inside each material that are given in terms of the

correctors presented in Theorem 2.6. We begin by presenting a general lower bound that holds for the composition of the
sequence {χε

i ∇uε}ε>0 with any non-negative Carathéodory function. Recall that ψ : Ω ×R
n → R is a Carathéodory function

if ψ(x, ·) is continuous for almost every x ∈ Ω and if ψ(·, λ) is measurable in x for every λ ∈ R
n . The lower bound on the

sequence obtained by the composition of ψ(x, ·) with χε
i (x)∇uε(x) is given by

Theorem 2.7. For all Carathéodory functions ψ � 0 and measurable sets D ⊂ Ω we have∫
D

∫
Y

ψ
(
x,χi(y)p

(
y,∇u(x)

))
dy dx � lim inf

ε→0

∫
D

ψ
(
x,χε

i (x)∇uε(x)
)

dx.

If the sequence {ψ(x,χε
i (x)∇uε(x))}ε>0 is weakly convergent in L1(Ω), then the inequality becomes an equality.

In particular, for ψ(x, λ) = |λ|q with q � 2, we have∫
D

∫
Y

χi(y)
∣∣p

(
y,∇u(x)

)∣∣q
dy dx � lim inf

ε→0

∫
D

χε
i (x)

∣∣∇uε(x)
∣∣q

dx. (2.22)

Theorem 2.7 together with (2.22) provide explicit lower bounds on the gradient field inside each material. It relates the
local excursions of the gradient inside each phase χε

i ∇uε to the average gradient ∇u through the multi-scale quantity given
by the corrector p(y,∇u(x)). It is clear from (2.22) that the Lq(Y × Ω;R

n) integrability of p(y,∇u(x)) provides a lower
bound on the Lq(Ω;R

n) integrability of ∇uε .
The proof of Theorem 2.7 is given in Section 6.2.
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3. Properties of the homogenized operator b

In this section, we prove properties (2.10) and (2.11) of the homogenized operator b. In the rest of the paper, the letter
C will represent a generic positive constant independent of ε , and it can take different values.

3.1. Proof of (2.11)

Using (2.8) and (2.2), we have

(
b(ξ2) − b(ξ1), ξ2 − ξ1

) =
∫
Y

(
A
(

y, p(y, ξ2)
) − A

(
y, p(y, ξ1)

)
, p(y, ξ2) − p(y, ξ1)

)
dy

� C

(∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

)

� 0.

3.2. Proof of (2.10)

By (2.1), Hölder’s inequality, and (2.2) we have

∣∣b(ξ1) − b(ξ2)
∣∣ �

∫
Y

∣∣A
(

y, p(y, ξ1)
) − A

(
y, p(y, ξ2)

)∣∣dy

� C

(∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy

) 1
p1

(∫
Y

χ1(y)
(
1 + ∣∣p(y, ξ1)

∣∣ + ∣∣p(y, ξ2)
∣∣)q2(p1−2)

dy

) 1
q2

+ C

(∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

) 1
p2

×
(∫

Y

χ2(y)
(
1 + ∣∣p(y, ξ1)

∣∣ + ∣∣p(y, ξ2)
∣∣)q1(p2−2)

dy

) 1
q1

� C

[∫
Y

(
A
(

y, p(y, ξ1)
) − A

(
y, p(y, ξ2)

)
, p(y, ξ1) − p(y, ξ2)

)
dy

] 1
p1

×
[∫

Y

χ1(y)
(
1 + ∣∣p(y, ξ1)

∣∣ + ∣∣p(y, ξ2)
∣∣)q2(p1−2)

dy

] 1
q2

+ C

[∫
Y

(
A
(

y, p(y, ξ1)
) − A

(
y, p(y, ξ2)

)
, p(y, ξ1) − p(y, ξ2)

)
dy

] 1
p2

×
[∫

Y

χ2(y)
(
1 + ∣∣p(y, ξ1)

∣∣ + ∣∣p(y, ξ2)
∣∣)q1(p2−2)

dy

] 1
q1

. (3.1)

Using (3.1), (2.8), (2.6), the Cauchy–Schwarz inequality, Lemma 5.1, and Young’s inequality we obtain

� C

[(
δp1

p1
+ δp2

p2

)∣∣b(ξ1) − b(ξ2)
∣∣

+ δ−q2 |ξ1 − ξ2|
1

p1−1 (1 + |ξ1|p1 + |ξ2|p1 + |ξ1|p2 + |ξ2|p2)
p1−2
p1−1

q2

+ δ−q1 |ξ1 − ξ2|
1

p2−1 (1 + |ξ1|p1 + |ξ2|p1 + |ξ1|p2 + |ξ2|p2)
p2−2
p2−1

q1

]
.

Rearranging the terms in (3.1), and taking δ small enough we obtain (2.10).
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4. Higher order integrability of the homogenized solution

In this section we display higher integrability results for the field gradients inside dispersed micro-structures and layered
materials. For dispersions of inclusions, the included material is taken to have a lower power-law exponent than that of the
host phase. For both of these cases it is shown that the homogenized solution lies in W 1,p2

0 (Ω). In the following sections
we will apply these facts to establish strong approximations for the sequences {χε

i ∇uε}ε>0 in L p2(Ω,R
n). The approach

taken here is variational and uses the homogenized Lagrangian associated with b(ξ) defined in (2.6). The integrability of the
homogenized solution u of (2.4) is determined by the growth of the homogenized Lagrangian with respect to its argument.

To proceed we introduce the local Lagrangian associated with power-law composites. The Lagrangian corresponding to
the problem studied here is given by

f̃ (x, ξ) = q(x)|ξ |p(x), with q(x) = σ1

p1
χ1(x) + σ2

p2
χ2(x), (4.1)

where ξ ∈ R
n and x ∈ Ω ⊂ R

n . Here ∇ξ f̃ (x, ξ) = A(x, ξ), where A(x, ξ) is given by (1.1).
We consider the rescaled Lagrangian

f̃ε(x, ξ) = f̃

(
x

ε
, ξ

)
= σ1

p1
χε

1 (x)|ξ |p1 + σ2

p2
χε

2 (x)|ξ |p2 , (4.2)

where χε
i (x) = χi(x/ε), i = 1,2, ξ ∈ R

n , and x ∈ Ω ⊂ R
n .

The Dirichlet problem given by (2.3) is associated with the variational problem given by

Eε
1( f ) = inf

u∈W
1,p1
0 (Ω)

{∫
Ω

f̃ε(x,∇u)dx − 〈 f , u〉
}
, (4.3)

with f ∈ W −1,q2 (Ω). Here (2.3) is the Euler equation for (4.3). However, we also consider

Eε
2( f ) = inf

u∈W
1,p2
0 (Ω)

{∫
Ω

f̃ε(x,∇u)dx − 〈 f , u〉
}
, (4.4)

with f ∈ W −1,q2 (Ω) (see [24]). Here 〈·,·〉 is the duality pairing between W 1,p1
0 (Ω) and W −1,q2 (Ω).

From [26], we have limε→0 Eε
i = Ei , for i = 1,2, where

Ei = inf
u∈W

1,pi
0 (Ω)

{∫
Ω

ˆ̃f i

(∇u(x)
)

dx − 〈 f , u〉
}
. (4.5)

In (4.5), ˆ̃f i(ξ) is given by

ˆ̃f i(ξ) = inf
v in W

1,pi
per (Y )

∫
Y

f̃
(

y, ξ + ∇v(y)
)

dy (4.6)

and satisfies

−c0 + c1|ξ |p1 � ˆ̃f i(ξ) � c2|ξ |p2 + c0. (4.7)

In general (see [25]), Lavrentiev phenomenon can occur and E1 < E2. However, for periodic dispersed and layered micro-
structures, no Lavrentiev phenomenon occurs and we have the following homogenization theorem.

Theorem 4.1. For periodic dispersed and layered micro-structures, the homogenized Dirichlet problems satisfy E1 = E2 , where ˆ̃f =
ˆ̃f 1 = ˆ̃f 2 and c2 + c1|ξ |p2 � ˆ̃f (ξ). Moreover, ∇ξ

ˆ̃f (ξ) = b(ξ), where b is the homogenized operator (2.6).

Proof. Theorem 4.1 has been proved for dispersed periodic media in [26]. We prove Theorem 4.1 for layers following the
steps outlined in [26].

We first show that ˆ̃f = ˆ̃f 1 = ˆ̃f 2 holds for layered media. Then we show that the homogenized Lagrangian ˆ̃f satisfies the
estimate given by

−c0 + c1|ξ |p2 � ˆ̃f (ξ) � c2|ξ |p2 + c0 (4.8)

with c0 � 0, and c1, c2 > 0.
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We introduce the space of functions W 1,p2∗ (R2) that belong to W 1,p2(R2) and are periodic on ∂ R2 ∩ ∂Y .

To prove that ˆ̃f 1 = ˆ̃f 2, it suffices to show that for every v ∈ W 1,p1
per (Y ) satisfying∫

Y

f̃
(

y, ξ + ∇v(y)
)

dy < ∞ (4.9)

there exists a sequence vε ∈ W 1,p2
per (Y ) such that

lim
ε→0

∫
Y

f̃
(

y, ξ + ∇vε(y)
)

dy =
∫
Y

f̃
(

y, ξ + ∇v(y)
)

dy.

Let v ∈ W 1,p1
per (Y ) that satisfies (4.9). From (4.1) we see that the restriction of v to R2, denoted by R(v), belongs to

W 1,p2∗ (R2). Now we extend R(v) to R1 so that the extension ṽ belongs to W 1,p2
per (Y ) and ṽ(y) = R(v(y)) = v(y) on R2. For

future reference we denote the left component of R2 by R2,L and its boundary with R1 by ΓL and similarly denote the right
component of R2 by R2,R with boundary ΓR . We extend R(v) by reflection across each component of Γ = ΓL ∪ ΓR into R1.
Denote each of these reflections by v L and v R . Next introduce the smooth functions ϕL and ϕR , with ϕL(y) = 1 for y ∈ R2,L

and compact support in R1 and ϕR = 1 for y ∈ R2,R with compact support in R1. Here the support sets of ϕL and ϕR do
not intersect. The extension is given by

ṽ(y) =
{

ϕL(y)v L(y), y in supp{ϕL},
ϕR(y)v R(y), y in supp{ϕR},
v(y), y in R2.

Set z = v − ṽ . It is clear that z ∈ W 1,p1 (R1), is periodic on opposite faces of ∂Y ∩ ∂ R1, zero on Γ and we write∫
Y

f̃
(

y, ξ + ∇v(y)
)

dy =
∫
R2

f2
(
ξ + ∇v(y)

)
dy +

∫
R1

f1
(
ξ + ∇ ṽ(y) + ∇z(y)

)
dy,

where f1(ξ) = σ1
p1

|ξ |p1 and f2(ξ) = σ2
p2

|ξ |p2 .

We can choose a sequence {zε}ε>0 ∈ C∞
0 (R1) such that zε vanishes in R2 and zε → z in W 1,p1 (R1).

Define vε ∈ W 1,p2
per (Y ) by

vε =
{

v in R2,

ṽ + zε in R1.

Since vε → v in W 1,p1
per (Y ), we see that

lim
ε→0

∫
Y

f̃
(

y, ξ + ∇vε(y)
)

dy = lim
ε→0

(∫
R2

f2
(
ξ + ∇v(y)

)
dy +

∫
R1

f1
(
ξ + ∇ ṽ(y) + ∇zε(y)

)
dy

)

=
∫
Y

f̃
(

y, ξ + ∇v(y)
)

dy.

Therefore ˆ̃f = ˆ̃f 1 = ˆ̃f 2 for layered media.

We establish (4.8) by introducing the convex conjugate of ˆ̃f . We denote the convex dual of ˆ̃f i(ξ) by ˆ̃gi(ξ); i.e., ˆ̃gi(ξ) =
supλ∈Rn {ξ · λ − ˆ̃f i(λ)}. It is easily verified (see [24]) that

ˆ̃gi(ξ) = inf
w in Solqi (Y )

∫
Y

g̃
(

y, ξ + w(y)
)

dy (4.10)

and

−c0 + c∗
1|ξ |q1 � ˆ̃gi(ξ) � c∗

2|ξ |q2 + c0. (4.11)

Here Solqi (Y ) are the solenoidal vector fields belonging to Lqi (Y ,R
n) and having mean value zero

Solqi (Y ) = {
w ∈ Lqi

(
Y ;R

n)
: div w = 0, w · n anti-periodic

}
.

We will show that ˆ̃g = ˆ̃g1 = ˆ̃g2 satisfies ˆ̃g(ξ) � c2|ξ |q1 + c1, and apply duality to recover ˆ̃f (ξ) � c∗|ξ |p2 + c∗ .
2 1
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To get the upper bound on ˆ̃g we use the following lemma.

Lemma 4.2. There exists τ with divτ = 0 in Y , such that τ · n is anti-periodic on the boundary of Y , τ = −ξ in R1 , and∫
Y

∣∣τ (y)
∣∣q1 dy � C |ξ |q1 .

Proof. Let the function ϕ ∈ W 1,p2∗ (R2) be the solution of⎧⎨
⎩

∇ϕ|∇ϕ|p−2 · n is anti-periodic on ∂ R2 ∩ ∂Y ,

�p2ϕ = 0 in R2,(∇ϕ|∇ϕ|p2−2 · n
)∣∣

2 = (−ξ · n)|1 on Γ,

where the subscript 1 indicates the trace on the R1 side of Γ and 2 indicates the trace on the R2 side of Γ . The Neumann
problem given above is the stationarity condition for the energy

∫
R2

|∇φ|p2 dx − ∫
Γ

φξ · n dS when minimized over all

φ ∈ W 1,p2∗ (R2). The solution of the Neumann problem is unique up to a constant. Here the anti-periodic boundary condition
on ∇ϕ|∇ϕ|p−2 · n is the natural boundary condition for the problem.

Now we define τ according to

τ =
{−ξ in R1,

∇ϕ|∇ϕ|p2−2 in R2

and it follows that

|τ |q1 =
{ |ξ |q1 in R1,

[(∇ϕ|∇ϕ|p2−2)2] q1
2 = (|∇ϕ|p2−1)q1 = |∇ϕ|p2 in R2.

(4.12)

Then, for ψ ∈ W 1,p2∗ (R2) we have∫
R2

|∇ϕ|p2−2∇ϕ · ∇ψ dy =
∫
Γ

ψ |∇ϕ|p2−2∇ϕ · n dS +
∫

∂ R2∩∂Y

ψ |∇ϕ|p2−2∇ϕ · n dS

= −
∫
Γ

ψξ · n dS = −
∫
R2

∇ψ · ξ dy. (4.13)

Set ψ = ϕ in (4.13) and an application of Hölder’s inequality gives∫
R2

∣∣∇ϕ(y)
∣∣p2 dy �

∫
R2

|ξ |q1 dy. (4.14)

Therefore, using (4.12) and (4.14), we have∫
Y

∣∣τ (y)
∣∣q1 dy =

∫
R1

∣∣τ (y)
∣∣q1 dy +

∫
R2

∣∣τ (y)
∣∣q1 dy

=
∫
R1

|ξ |q1 dy +
∫
R2

∣∣∇ϕ(y)
∣∣p2 dy � C |ξ |q1 . �

Taking ˆ̃g to be the conjugate of ˆ̃f , and choosing τ in Solq1 (Y ) as in Lemma 4.2, we obtain

ˆ̃g(ξ) = inf
τ in Solq1 (Y )

∫
Y

g̃(y, ξ + τ )dy �
∫
Y

g̃(y, ξ + τ )dy

�
∫
R1

g̃(y,0)dy +
∫
R2

g̃(y, ξ + τ )dy � c1 + c2

∫
R2

|ξ + τ |q1 dy � c1 + c2|ξ |q1 ,

and the left-hand inequality in (4.8) follows from duality.
This concludes the proof of Theorem 4.1. �
Collecting results we now prove Theorem 2.5. Indeed the minimizer of E1 is precisely the solution u of (2.4) and (2.5).

Theorem 4.1 establishes the coercivity of E1 over W 1,p2 (Ω), thus the solution u lies in W 1,p2(Ω).
0 0
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5. Some useful lemmas and estimates

In this section we state and prove a priori bounds and convergence properties for the sequences pε defined in (2.14),
∇uε , and Aε(x, pε(x,∇uε)) that are used in the proof of the main results of this paper.

Lemma 5.1. For every ξ ∈ R
n we have∫

Y

χ1(y)
∣∣p(y, ξ)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ)

∣∣p2 dy � C
(
1 + |ξ |p1θ1 + |ξ |p2θ2

)
, (5.1)

and by a change of variables, we obtain∫
Yε

χε
1 (x)

∣∣pε(x, ξ)
∣∣p1 dx +

∫
Yε

χε
2 (x)

∣∣pε(x, ξ)
∣∣p2 dx � C

(
1 + |ξ |p1θ1 + |ξ |p2θ2

)|Yε |. (5.2)

Proof. Let ξ ∈ R
n . By (2.2) we have that(

A
(

y, p(y, ξ)
)
, p(y, ξ)

)
� C

(
χ1(y)

∣∣p(y, ξ)
∣∣p1 + χ2(y)

∣∣p(y, ξ)
∣∣p2

)
.

Integrating both sides over Y , using (2.1), and Young’s inequality, we get∫
Y

χ1(y)
∣∣p(y, ξ)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ)

∣∣p2 dy

� C

[(
δq2θ1 + δq1θ2

) +
( |ξ |p1θ1

δp1
+ |ξ |p2θ2

δp2

)
+ (

δq2 + δq1
)(∫

Y

χ1(y)
∣∣p(y, ξ)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ)

∣∣p2 dy

)]
.

Doing some algebraic manipulations, we obtain

(
1 − C

(
δq2 + δq1

))(∫
Y

χ1(y)
∣∣p(y, ξ)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ)

∣∣p2 dy

)

� C
[(

δq2θ1 + δq1θ2
) + (

δ−p1 |ξ |p1θ1 + δ−p2 |ξ |p2θ2
)]

.

On choosing an appropriate δ, we finally obtain (5.1). �
Lemma 5.2. For every ξ1, ξ2 ∈ R

n we have∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

� C
[(

1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2
) p1−2

p1−1 |ξ1 − ξ2|
p1

p1−1 θ

1
p1−1

1

+ (
1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2

) p2−2
p2−1 |ξ1 − ξ2|

p2
p2−1 θ

1
p2−1

2

]
(5.3)

and by doing a change of variables, we obtain∫
Yε

χε
1 (x)

∣∣pε(x, ξ1) − pε(x, ξ2)
∣∣p1 dx +

∫
Yε

χε
2 (x)

∣∣pε(x, ξ1) − pε(x, ξ2)
∣∣p2 dx

� C
[(

1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2
) p1−2

p1−1 |ξ1 − ξ2|
p1

p1−1 θ

1
p1−1

1

+ (
1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2

) p2−2
p2−1 |ξ1 − ξ2|

p2
p2−1 θ

1
p2−1

2

]|Yε |. (5.4)

Proof. By (2.2), (2.8), and (2.1) we have that∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

� C

∫ ∣∣A
(

y, p(y, ξ1)
) − A

(
y, p(y, ξ2)

)∣∣|ξ1 − ξ2|dy
Y
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� C

[∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣(1 + ∣∣p(y, ξ1)
∣∣ + ∣∣p(y, ξ2)

∣∣)p1−2|ξ1 − ξ2|dy

+
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣(1 + ∣∣p(y, ξ1)
∣∣ + ∣∣p(y, ξ2)

∣∣)p2−2|ξ1 − ξ2|dy

]
.

Using Hölder’s inequality in the first term with r1 = p1/(p1 − 2), r2 = p1, r3 = p1, and in the second term with s1 =
p2/(p2 − 2), s2 = p2, s3 = p2, and using Lemma 5.1, we obtain

� C

[(
1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2

) p1−2
p1

× |ξ1 − ξ2|θ
1

p1
1

(∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy

) 1
p1

+ (
1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2

) p2−2
p2

× |ξ1 − ξ2|θ
1

p2
2

(∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

) 1
p2

]
.

By Young’s inequality, we get

� C

[
δ−q2(1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2)

(p1−2)q2
p1 |ξ1 − ξ2|q2θ

q2
p1

1

q2

+ δp1
∫

Y χ1(y)|p(y, ξ1) − p(y, ξ2)|p1 dy

p1
+ δp2

∫
Y χ2(y)|p(y, ξ1) − p(y, ξ2)|p2 dy

p2

+ δ−q1(1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2)
(p2−2)q1

p2 |ξ1 − ξ2|q1θ

q1
p2

2

q1

]
.

Straightforward algebraic manipulation delivers

kδ

(∫
Y

χ1(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p1 dy +
∫
Y

χ2(y)
∣∣p(y, ξ1) − p(y, ξ2)

∣∣p2 dy

)

� C

[
δ−q2(1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2)

p1−2
p1−1 |ξ1 − ξ2|

p1
p1−1 θ

1
p1−1

1

q2

+ δ−q1(1 + |ξ1|p1θ1 + |ξ1|p2θ2 + |ξ2|p1θ1 + |ξ2|p2θ2)
p2−2
p2−1 |ξ1 − ξ2|

p2
p2−1 θ

1
p2−1

2

q1

]
,

where kδ = min{(1 − Cδp1

p1
), (1 − Cδp2

p2
)}.

The result follows on choosing δ small enough so that kδ is positive. �
Lemma 5.3. Let ϕ be such that

sup
ε>0

{∫
Ω

χε
1 (x)

∣∣ϕ(x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣ϕ(x)
∣∣p2 dx

}
< ∞,

and let Ψ be a simple function of the form

Ψ (x) =
m∑

j=0

η jχΩ j (x), (5.5)

with η j ∈ R
n \ {0}, Ω j ⊂⊂ Ω , |∂Ω j | = 0, Ω j ∩ Ωk = ∅ for j �= k and j,k = 1, . . . ,m; and set η0 = 0 and Ω0 = Ω \ ⋃m

j=1 Ω j . Then
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lim sup
ε→0

(∫
Ω

χε
1 (x)

∣∣pε

(
x, Mεϕ(x)

) − pε

(
x,Ψ (x)

)∣∣p1 dx +
∫
Ω

χε
2 (x)

∣∣pε

(
x, Mεϕ(x)

) − pε

(
x,Ψ (x)

)∣∣p2 dx

)

� lim sup
ε→0

C
2∑

i=1

[(
|Ω| +

∫
Ω

χε
1 (x)

∣∣ϕ(x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣ϕ(x)
∣∣p2 dx

+
∫
Ω

χε
1 (x)

∣∣Ψ (x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣Ψ (x)
∣∣p2 dx

) pi−2
pi−1

(∫
Ω

χε
i (x)

∣∣ϕ(x) − Ψ (x)
∣∣pi dx

) 1
pi−1

]
. (5.6)

Proof. Let Ψ be of the form (5.5). For every ε > 0, let us denote Ωε = ⋃
i∈Iε Y i

ε ; and for j = 0,1,2, . . . ,m, we set

I j
ε = {

i ∈ Iε : Y i
ε ⊆ Ω j

}
and J j

ε = {
i ∈ Iε : Y i

ε ∩ Ω j �= ∅, Y i
ε \ Ω j �= ∅}

.

Furthermore, E j
ε = ⋃

i∈I j
ε

Y i
ε , F j

ε = ⋃
i∈ J j

ε
Y i

ε , and as ε → 0, we have |F j
ε | → 0.

Set

ξ i
ε = 1

|Y i
ε |

∫
Y i

ε

ϕ(y)dy.

For ε sufficiently small Ω j ( j �= 0) is contained in Ωε .

From (5.5), (2.20), using the fact that Ω j ⊂ E j
ε ∪ F j

ε , Lemma 5.2, and Hölder’s inequality it follows that∫
Ω

χε
1 (x)

∣∣pε(x, Mεϕ) − pε(x,Ψ )
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣pε(x, Mεϕ) − pε(x,Ψ )
∣∣p2 dx

� C

[(
|Ω| +

∫
Ω

χε
1 (x)|Mεϕ − ϕ|p1 dx +

∫
Ω

χε
1 (x)|ϕ|p1 dx +

∫
Ω

χε
2 (x)|Mεϕ − ϕ|p2 dx

+
∫
Ω

χε
2 (x)

∣∣ϕ(x)
∣∣p2 dx +

∫
Ω

χε
1 (x)

∣∣Ψ (x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣Ψ (x)
∣∣p2 dx

) p1−2
p1−1

×
(∫

Ω

χε
1 (x)|Mεϕ − ϕ|p1 dx +

∫
Ω

χε
1 (x)|ϕ − Ψ |p1 dx

) 1
p1−1

+
(

|Ω| +
∫
Ω

χε
1 (x)|Mεϕ − ϕ|p1 dx +

∫
Ω

χε
1 (x)|ϕ|p1 dx +

∫
Ω

χε
2 (x)|Mεϕ − ϕ|p2 dx

+
∫
Ω

χε
2 (x)

∣∣ϕ(x)
∣∣p2 dx +

∫
Ω

χε
1 (x)

∣∣Ψ (x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣Ψ (x)
∣∣p2 dx

) p2−2
p2−1

×
(∫

Ω

χε
2 (x)|Mεϕ − ϕ|p2 dx +

∫
Ω

χε
2 (x)|ϕ − Ψ |p2 dx

) 1
p2−1

]
+ C

m∑
j=0

[(∫
F j
ε

θ1

∣∣∣∣∑
i∈ J j

ε

χY i
ε
(x)ξ i

ε − η j

∣∣∣∣
p1

dx

) 1
p1−1

×
(∫

F j
ε

∣∣Mεϕ(x)
∣∣p1

θ1 dx + ∣∣F j
ε

∣∣ + |η j|p1θ1
∣∣F j

ε

∣∣ + |η j|p2θ2
∣∣F j

ε

∣∣ +
∫
F j
ε

∣∣Mεϕ(x)
∣∣p2

θ2 dx

) p1−2
p1−1

+
(∣∣F j

ε

∣∣ +
∫
F j
ε

∣∣Mεϕ(x)
∣∣p1

θ1 dx +
∫
F j
ε

∣∣Mεϕ(x)
∣∣p2

θ2 dx + |η j|p1θ1
∣∣F j

ε

∣∣ + |η j|p2θ2
∣∣F j

ε

∣∣) p2−2
p2−1

×
(∫

j

θ2

∣∣∣∣∑
i∈ J j

ε

χY i
ε
(x)ξ i

ε − η j

∣∣∣∣
p2

dx

) 1
p2−1

]
. (5.7)
Fε
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Since |∂Ω j | = 0 for j �= 0, we have that |F j
ε | → 0 as ε → 0, for every j = 0,1,2, . . . ,m.

By property (1) of Mε mentioned in Section 2.2.1, we have∫
Ω

χε
i (x)

∣∣Mεϕ(x) − ϕ(x)
∣∣pi dx → 0, as ε → 0, for i = 1,2.

Therefore, taking lim sup as ε → 0 in (5.7), we obtain (5.6). �
Lemma 5.4. If the micro-structure is dispersed or layered, we have that

sup
ε>0

{∫
Ω

χε
i (x)

∣∣pε

(
x, Mε∇u(x)

)∣∣pi dx

}
� C < ∞, for i = 1,2.

Proof. Using (2.20), we have∫
Ω

χε
1 (x)

∣∣pε

(
x, Mε∇u(x)

)∣∣p1 dx +
∫
Ω

χε
2 (x)

∣∣pε

(
x, Mε∇u(x)

)∣∣p2 dx

=
∑
i∈Iε

[∫
Y i

ε

χε
1 (x)

∣∣pε

(
x, ξ i

ε

)∣∣p1 dx +
∫
Y i

ε

χε
2 (x)

∣∣pε

(
x, ξ i

ε

)∣∣p2 dx

]

� C
∑
i∈Iε

(
1 + ∣∣ξ i

ε

∣∣p1
θ1 + ∣∣ξ i

ε

∣∣p2
θ2

)∣∣Y i
ε

∣∣
= C

∑
i∈Iε

(∣∣Y i
ε

∣∣ + ∣∣ξ i
ε

∣∣p1
θ1

∣∣Y i
ε

∣∣ + ∣∣ξ i
ε

∣∣p2
θ2

∣∣Y i
ε

∣∣)
� C

(|Ω| + ‖∇u‖p1
Lp1 (Ω)

+ ‖∇u‖p2
Lp2 (Ω)

)
< ∞,

where the last three inequalities follow from Lemma 5.1, Jensen’s inequality, and Theorem 2.5. �
Lemma 5.5. Let uε be the solution to (2.3). Then (2.9) holds.

Proof. Evaluating uε in the weak formulation for (2.3), applying Hölder’s inequality, and since f ∈ W −1,q2 (Ω), we obtain∫
Ω

(
Aε(x,∇uε),∇uε

)
dx = σ1

∫
Ω

χε
1 (x)|∇uε |p1 dx + σ2

∫
Ω

χε
2 (x)|∇uε |p2 dx

= 〈 f , uε〉 � C

[(∫
Ω

χε
1 (x)|∇uε |p1 dx

) 1
p1 +

(∫
Ω

χε
2 (x)|∇uε |p2 dx

) 1
p2

]
. (5.8)

Applying Young’s inequality to the last term in (5.8), we obtain

σ1

∫
Ω

χε
1 (x)|∇uε |p1 dx + σ2

∫
Ω

χε
2 (x)|∇uε |p2 dx

� C

[
δp1

p1

∫
Ω

χε
1 (x)|∇uε |p1 dx + δ−q2

q2
+ δp2

p2

∫
Ω

χε
2 (x)|∇uε |p2 dx + δ−q1

q1

]
. (5.9)

By rearranging the terms in (5.9), one gets(
σ1 − C

δp1

p1

)∫
Ω

χε
1 (x)|∇uε |p1 dx +

(
σ2 − C

δp2

p2

)∫
Ω

χε
2 (x)|∇uε |p2 dx � δ−q2

q2
+ δ−q1

q1
.

Therefore, by choosing δ small enough so that min{σ1 − C δp1

p1
, σ2 − C δp2

p2
} is positive, one obtains∫

Ω

χε
1 (x)

∣∣∇uε(x)
∣∣p1 dx +

∫
Ω

χε
2 (x)

∣∣∇uε(x)
∣∣p2 dx � C . �
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Lemma 5.6. For all j = 0, . . . ,m, we have that
∫
Ω j

|(Aε(x, pε(x, η j)),∇uε(x))|dx and
∫
Ω j

|(Aε(x,∇uε(x)), pε(x, η j))|dx are uni-

formly bounded with respect to ε .

Proof. Using Hölder’s inequality, (2.1), and (2.9), we obtain∫
Ω j

∣∣(Aε

(
x, pε(x, η j)

)
,∇uε(x)

)∣∣dx

�
∫
Ω j

∣∣Aε

(
x, pε(x, η j)

)∣∣∣∣∇uε(x)
∣∣dx

� C

[(∫
Ω j

χε
1 (x)

(
1 + ∣∣pε(x, η j)

∣∣)p1 dx

) 1
q2 +

(∫
Ω j

χε
2 (x)

(
1 + ∣∣pε(x, η j)

∣∣)p2 dx

) 1
q1

]

� C, where C does not depend on ε.

The proof of the uniform boundedness of
∫
Ω j

|(Aε(x,∇uε(x)), pε(x, η j))|dx follows in the same manner. �
Lemma 5.7. As ε → 0, up to a subsequence, (Aε(·, pε(·, η j)),∇uε(·)) converges weakly to a function g j ∈ L1(Ω j;R), for all j =
0, . . . ,m. In a similar way, up to a subsequence, (Aε(·,∇uε(·)), pε(·, η j)) converges weakly to a function h j ∈ L1(Ω j;R), for all
j = 0, . . . ,m.

Proof. We prove the first statement of the lemma, the second statement follows in a similar way. The lemma follows from
the Dunford–Pettis theorem (see [4]). To apply this theorem we establish the following conditions:

(1)
∫
Ω j

|(Aε(x, pε(x, η j)),∇uε(x))|dx is uniformly bounded with respect to ε .

(2) For all j = 0, . . . ,m, (Aε(·, pε(·, η j)),∇uε(·)) is equiintegrable.

The first condition is proved in Lemma 5.6. For the second condition, we have that χε
1 (·)|Aε(·, pε(·, η j))|q2 and

χε
2 (·)|Aε(·, pε(·, η j))|q1 are equiintegrable (see for example Theorem 1.5 of [4]).

By (2.9), for any E ⊂ Ω , we have

max
i=1,2

{
sup
ε>0

{(∫
E

χε
i (x)

∣∣∇uε(x)
∣∣pi dx

) 1
pi

}}
� C .

Let α > 0 arbitrary and choose α1 > 0 and α2 > 0 such that α
1/q2
1 + α

1/q1
2 < α/C .

For α1 and α2, there exist λ(α1) > 0 and λ(α2) > 0 such that for every E ⊂ Ω with |E| < min{λ(α1), λ(α2)},∫
E

χε
1 (x)

∣∣Aε

(
x, pε(x, η j)

)∣∣q2 dx < α1 and
∫
E

χε
2 (x)

∣∣Aε

(
x, pε(x, η j)

)∣∣q1 dx < α2.

Take λ = λ(α) = min{λ(α1), λ(α2)}. Then, for all E ⊂ Ω with |E| < λ(α), we have∫
E

∣∣(Aε

(
x, pε(x, η j)

)
,∇uε(x)

)∣∣dx �
∫
E

∣∣Aε

(
x, pε(x, η j)

)∣∣∣∣∇uε(x)
∣∣dx

�
(∫

E

χε
1 (x)

∣∣Aε

(
x, pε(x, η j)

)∣∣q2 dx

) 1
q2

(∫
E

χε
1 (x)

∣∣∇uε(x)
∣∣p1 dx

) 1
p1

+
(∫

E

χε
2 (x)

∣∣Aε

(
x, pε(x, η j)

)∣∣q1 dx

) 1
q1

(∫
E

χε
2 (x)

∣∣∇uε(x)
∣∣p2 dx

) 1
p2

� C
(
α

1/q2
1 + α

1/q1
2

)
< α,

for every α > 0, and so (Aε(·, pε(·, η j)),∇uε(·)) is equiintegrable. �
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6. Proof of the main results

6.1. Proof of the corrector theorem

We are now in the position to give the proof of Theorem 2.6.

Proof of Theorem 2.6. Let uε ∈ W 1,p1
0 (Ω) the solutions of (2.3). By (2.2), we have that∫

Ω

[
χε

1 (x)
∣∣pε

(
x, Mε∇u(x)

) − ∇uε(x)
∣∣p1 + χε

2 (x)
∣∣pε

(
x, Mε∇u(x)

) − ∇uε(x)
∣∣p2

]
dx

� C

∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

) − ∇uε(x)
)

dx.

To prove Theorem 2.6, we show that∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

) − ∇uε(x)
)

dx

=
∫
Ω

(
Aε

(
x, pε(x, Mε∇u)

)
, pε(x, Mε∇u)

)
dx −

∫
Ω

(
Aε

(
x, pε(x, Mε∇u)

)
,∇uε

)
dx

−
∫
Ω

(
Aε(x,∇uε), pε(x, Mε∇u)

)
dx +

∫
Ω

(
Aε(x,∇uε),∇uε

)
dx

goes to 0, as ε → 0. This is done in four steps.
In what follows, we use the following notation

ξ i
ε = 1

|Y i
ε |

∫
Y i

ε

∇u dx.

Step 1. Let us prove that∫
Ω

(
Aε

(
x, pε(x, Mε∇u)

)
, pε(x, Mε∇u)

)
dx →

∫
Ω

(
b(∇u),∇u

)
dx (6.1)

as ε → 0.

Proof. From (2.13) and (2.20), we obtain∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

))
, pε

(
x, Mε∇u(x)

))
dx

=
∫
Ωε

(
Aε

(
x, pε

(
x, Mε∇u(x)

))
, pε

(
x, Mε∇u(x)

))
dx

=
∑
i∈Iε

∫
Y i

ε

(
A

(
x

ε
, p

(
x

ε
, ξ i

ε

))
, p

(
x

ε
, ξ i

ε

))
dx

= εn
∑
i∈Iε

∫
Y

(
A
(

y, p
(

y, ξ i
ε

))
, p

(
y, ξ i

ε

))
dy

=
∑
i∈Iε

∫
Ω

χY i
ε
(x)

(
b
(
ξ i
ε

)
, ξ i

ε

)
dx

=
∫ (

b
(
Mε∇u(x)

)
, Mε∇u(x)

)
dx.
Ω
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By (2.10), the definition of q1, and Hölder’s inequality we have∫
Ω

∣∣b(
Mε∇u(x)

) − b
(∇u(x)

)∣∣q1 dx

� C

[(∫
Ω

∣∣Mε∇u(s) − ∇u(s)
∣∣p2 dx

) 1
(p2−1)2

+
(∫

Ω

∣∣Mε∇u(x) − ∇u(x)
∣∣p2 dx

) 1
(p2−1)(p1−1)

]
.

From property (1) of Mε , we obtain that

b(Mε∇u) → b(∇u) in Lq1
(
Ω;R

n), as ε → 0. (6.2)

Now, (6.1) follows from (6.2) since Mε∇u → ∇u in L p2(Ω;R
n), so∫

Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

))
, pε

(
x, Mε∇u(x)

))
dx

=
∫
Ω

(
b
(
Mε∇u(x)

)
, Mε∇u(x)

)
dx →

∫
Ω

(
b
(∇u(x)

)
,∇u(x)

)
dx,

as ε → 0. �
Step 2. We now show that∫

Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

))
,∇uε(x)

)
dx →

∫
Ω

(
b
(∇u(x)

)
,∇u(x)

)
dx (6.3)

as ε → 0.

Proof. Let δ > 0. From Theorem 2.5 we have ∇u ∈ L p2(Ω;R
n) and there exists a simple function Ψ satisfying the assump-

tions of Lemma 5.3 such that

‖∇u − Ψ ‖L p2 (Ω;Rn) � δ. (6.4)

Let us write∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

))
,∇uε(x)

)
dx

=
∫
Ω

(
Aε

(
x, pε(x,Ψ )

)
,∇uε

)
dx +

∫
Ω

(
Aε

(
x, pε(x, Mε∇u)

) − Aε

(
x, pε(x,Ψ )

)
,∇uε

)
dx.

We first show that∫
Ω

(
Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx →

∫
Ω

(
b
(
Ψ (x)

)
,∇u(x)

)
dx, as ε → 0.

We have∫
Ω

(
Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx =

m∑
j=0

∫
Ω j

(
Aε

(
x, pε(x, η j)

)
,∇uε(x)

)
dx.

Now from (2.19), we have that Aε(·, pε(·, η j)) ⇀ b(η j) ∈ Lq2 (Ω j;R
n), and by (2.12),

∫
Ω j

(Aε(x, pε(x, η j)),∇ϕ(x))dx = 0,

for ϕ ∈ W 1,p1
0 (Ω j).

Take ϕ = δuε , with δ ∈ C∞
0 (Ω j) to get

0 =
∫
Ω

(
Aε

(
x, pε(x, η j)

)
, (∇δ)uε

)
dx +

∫
Ω

(
Aε

(
x, pε(x, η j)

)
, (∇uε)δ

)
dx.
j j
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Taking the limit as ε → 0, and using the fact that uε ⇀ u in W 1,p1
0 (Ω) and (2.19), we have by Lemma 5.7 that∫

Ω j

g j(x)δ(x)dx = lim
ε→0

∫
Ω j

(
Aε

(
x, pε(x, η j)

)
, (∇uε)δ

)
dx =

∫
Ω j

(
b(η j), (∇u)δ

)
dx.

Therefore, we may conclude that g j = (b(η j),∇u), so

n∑
j=0

∫
Ω j

(
Aε

(
x, pε(x, η j)

)
,∇uε(x)

)
dx →

n∑
j=0

∫
Ω j

(
b(η j),∇u(x)

)
dx, as ε → 0.

Thus, we get∫
Ω

(
Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx →

∫
Ω

(
b
(
Ψ (x)

)
,∇u(x)

)
dx, as ε → 0.

On the other hand, let us estimate∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx.

By (2.1) and Hölder’s inequality we obtain∣∣∣∣
∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx

∣∣∣∣
� C

(∫
Ω

χε
1 (x)

∣∣pε(x, Mε∇u) − pε(x,Ψ )
∣∣p1 dx

) 1
p1

(∫
Ω

χε
1 (x)|∇uε |p1 dx

) 1
p1

×
(∫

Ω

χε
1 (x)

(
1 + ∣∣pε(x, Mε∇u)

∣∣p1 + ∣∣pε(x,Ψ )
∣∣p1

)
dx

) p1−2
p1

+ C

(∫
Ω

χε
2 (x)

∣∣pε(x, Mε∇u) − pε(x,Ψ )
∣∣p2 dx

) 1
p2

(∫
Ω

χε
2 (x)|∇uε |p2 dx

) 1
p2

×
(∫

Ω

χε
2 (x)

(
1 + ∣∣pε(x, Mε∇u)

∣∣p2 + ∣∣pε(x,Ψ )
∣∣p2

)
dx

) p2−2
p2

. (6.5)

Applying (2.9), (5.4), and Lemma 5.1 to the right-hand side of (6.5), we obtain∣∣∣∣
∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx

∣∣∣∣
� C

[(∫
Ω

χε
1 (x)

∣∣pε

(
x, Mε∇u(x)

) − pε

(
x,Ψ (x)

)∣∣p1 dx

) 1
p1

+
(∫

Ω

χε
2 (x)

∣∣pε

(
x, Mε∇u(x)

) − pε

(
x,Ψ (x)

)∣∣p2 dx

) 1
p2

]
. (6.6)

Applying Lemma 5.3 and (6.4) to (6.6), we discover that

lim sup
ε→0

∣∣∣∣
∫
Ω

(
Aε

(
x, pε

(
x, Mε∇u(x)

)) − Aε

(
x, pε

(
x,Ψ (x)

))
,∇uε(x)

)
dx

∣∣∣∣
� C

[(
δq1 + δq2

) 1
p1 + (

δq1 + δq2
) 1

p2
]
, (6.7)

where C is independent of δ. Since δ is arbitrary we conclude that the limit on the left-hand side of (6.7) is equal to 0.
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Finally, using the continuity of b and Hölder’s inequality we obtain∣∣∣∣
∫
Ω

(
b
(∇u(x)

) − b
(
Ψ (x)

)
,∇u(x)

)
dx

∣∣∣∣ � C
[
δ

q1
p1−1 + δ

q1
p2−1

] 1
q1 ,

where C does not depend on δ.
Step 2 is proved noticing that δ can be taken arbitrarily small. �

Step 3. We will show that∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

))
dx →

∫
Ω

(
b
(∇u(x)

)
,∇u(x)

)
dx (6.8)

as ε → 0.

Proof. Let δ > 0. As in the proof of Step 2, assume Ψ is a simple function satisfying assumptions of Lemma 5.3 and such
that ‖∇u − Ψ ‖Lp2 (Ω;Rn) < δ.

Let us write∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

))
dx

=
∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x,Ψ (x)

))
dx +

∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

) − pε

(
x,Ψ (x)

))
dx.

We first show that∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x,Ψ (x)

))
dx →

∫
Ω

(
b
(∇u(x)

)
,Ψ (x)

)
dx.

We start by writing∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x,Ψ (x)

))
dx =

m∑
j=0

∫
Ω j

(
Aε

(
x,∇uε(x)

)
, pε(x, η j)

)
dx.

From Lemma 5.7, up to a subsequence, (Aε(·,∇uε), pε(·, η j)) converges weakly to a function h j ∈ L1(Ω j;R), as ε → 0.
By Theorem 2.1, we have Aε(·,∇uε) ⇀ b(∇u) ∈ Lq2 (Ω;R

n) and

−div
(

Aε(x,∇uε)
) = f = −div

(
b(∇u)

)
.

From (2.17), pε satisfies pε(·, η j) ⇀ η j in L p1(Ω j,R
n).

Arguing as in Step 2, we find that (Aε(x,∇uε(x)), pε(x, η j)) ⇀ (b(∇u(x)), η j) in D ′(Ω j), as ε → 0.
Therefore, we may conclude that h j = (b(∇u), η j), and hence,

n∑
j=0

∫
Ω j

(
Aε

(
x,∇uε(x)

)
, pε(x, η j)

)
dx →

n∑
j=0

∫
Ω j

(
b
(∇u(x)

)
, η j

)
dx, as ε → 0.

Thus, we get∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x,Ψ (x)

))
dx →

∫
Ω

(
b
(∇u(x)

)
,Ψ (x)

)
dx, as ε → 0.

Moreover, applying Hölder’s inequality and (2.1) we have∣∣∣∣
∫
Ω

(
Aε

(
x,∇uε(x)

)
, pε

(
x, Mε∇u(x)

) − pε

(
x,Ψ (x)

))
dx

∣∣∣∣
� C

[(∫
Ω

χε
1

(
1 + |∇uε |

)p1

) 1
q2

(∫
Ω

χε
1

∣∣pε(x, Mε∇u) − pε(x,Ψ )
∣∣p1 dx

) 1
p1

+
(∫

χε
2

(
1 + |∇uε |

)p2

) 1
q1

(∫
χε

2

∣∣pε(x, Mε∇u) − pε(x,Ψ )
∣∣p2 dx

) 1
p2

]
.

Ω Ω
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As in the proof of Step 2 we see that

lim sup
ε→0

∣∣∣∣
∫
Ω

(
Aε(x,∇uε), pε(x, Mε∇u) − pε(x,Ψ )

)
dx

∣∣∣∣ � C
[(

δq2 + δq1
) 1

p1 + (
δq1 + δq2

) 1
p2

]
,

where C does not depend on δ.
Hence, proceeding as in Step 2, we find that

lim sup
ε→0

∣∣∣∣
∫
Ω

(
Aε(x,∇uε), pε(x, Mε∇u)

)
dx −

∫
Ω

(
b(∇u),∇u

)
dx

∣∣∣∣
� C

((
δq2 + δq1

) 1
p1 + (

δq2 + δq1
) 1

p2 + 0 + δ
∥∥b(∇u)

∥∥
Lq2 (Ω,Rn)

)
,

where C is independent of δ. Now since δ is arbitrarily small, the proof of Step 3 is complete. �
Step 4. Finally, let us prove that∫

Ω

(
Aε

(
x,∇uε(x)

)
,∇uε(x)

)
dx →

∫
Ω

(
b
(∇u(x)

)
,∇u(x)

)
dx, as ε → 0. (6.9)

Proof. Since∫
Ω

(
Aε(x,∇uε),∇uε

)
dx = 〈−div

(
Aε(x,∇uε)

)
, uε

〉 = 〈 f , uε〉, (6.10)

∫
Ω

(
b(∇u),∇u

)
dx = 〈−div

(
b(∇u)

)
, u

〉 = 〈 f , u〉, (6.11)

and uε ⇀ u in W 1,p1 (Ω), the result follows immediately. �
Finally, Theorem 2.6 follows from (6.1), (6.3), (6.8) and (6.9). �

6.2. Proof of the lower bound on the amplification of the macroscopic field by the micro-structure

The sequence {χε
i (x)∇uε(x)}ε>0 has a Young measure ν i = {ν i

x}x∈Ω associated to it (see Theorem 6.2 and the discussion
following in [14]), for i = 1,2.

As a consequence of Theorem 2.6 proved in the previous section, we have that∥∥∥∥χε
i (x)p

(
x

ε
, Mε(∇u)(x)

)
− χε

i (x)∇uε(x)

∥∥∥∥
Lpi (Ω;Rn)

→ 0,

as ε → 0, which implies that the sequences{
χε

i (x)p

(
x

ε
, Mε(∇u)(x)

)}
ε>0

and
{
χε

i (x)∇uε(x)
}
ε>0

share the same Young measure (see Lemma 6.3 of [14]), for i = 1,2.
The next lemma identifies the Young measure ν i .

Lemma 6.1. For all φ ∈ C0(R
n) and for all ζ ∈ C∞

0 (Rn), we have∫
Ω

ζ(x)

∫
Rn

φ(λ)dν i
x(λ)dx =

∫
Ω

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx. (6.12)

Proof. To prove (6.12), we will show that given φ ∈ C0(R
n) and ζ ∈ C∞

0 (Rn),

lim
ε→0

∫
ζ(x)φ

(
χε

i (x)p

(
x

ε
, Mε(∇u)(x)

))
dx =

∫
ζ(x)

∫
φ
(
χi(y)p

(
y,∇u(x)

))
dy dx. (6.13)
Ω Ω Y
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We consider the difference∣∣∣∣
∫
Ω

ζ(x)φ

(
χi

(
x

ε

)
p

(
x

ε
, Mε(∇u)(x)

))
dx −

∫
Ω

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx

∣∣∣∣
�

∣∣∣∣∑
i∈Iε

∫
Y i

ε

ζ(x)φ

(
χi

(
x

ε

)
p

(
x

ε
, ξ i

ε

))
dx −

∫
Ωε

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx

∣∣∣∣
+ C |Ω \ Ωε |. (6.14)

Note that the term C |Ω \Ωε | goes to 0, as ε → 0. Now set xi
ε to be the center of Y i

ε . On the first integral use the change
of variables x = xi

ε + ε y, where y belongs to Y , and since dx = εn dy, we get∣∣∣∣∑
i∈Iε

∫
Y i

ε

ζ(x)φ

(
χi

(
x

ε

)
p

(
x

ε
, ξ i

ε

))
dx −

∑
i∈Iε

∫
Y i

ε

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx

∣∣∣∣
=

∣∣∣∣∑
i∈Iε

εn
∫
Y

ζ
(
xi
ε + ε y

)
φ
(
χi(y)p

(
y, ξ i

ε

))
dy −

∑
i∈Iε

∫
Y i

ε

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx

∣∣∣∣.
Applying Taylor’s expansion for ζ , we have

�
∣∣∣∣∑

i∈Iε

∫
Y i

ε

∫
Y

(
ζ(x) + CO(ε)

)[
φ
(
χi(y)p

(
y, ξ i

ε

)) − φ
(
χi(y)p

(
y,∇u(x)

))]
dy dx

∣∣∣∣
+ CO(ε)

�
∣∣∣∣
∫
Ωε

∣∣ζ(x)
∣∣ ∫

Y

∣∣φ(
χi(y)p

(
y, Mε∇u(x)

)) − φ
(
χi(y)p

(
y,∇u(x)

))∣∣dy dx

∣∣∣∣
+ CO(ε).

Because of the uniform Lipschitz continuity of φ, we get

� C

∣∣∣∣
∫
Ωε

∣∣ζ(x)
∣∣ ∫

Y

∣∣p
(

y, Mε∇u(x)
) − p

(
y,∇u(x)

)∣∣dy dx

∣∣∣∣ + CO(ε).

By Hölder’s inequality twice and Lemma 5.2, we have

� C

{(∫
Ωε

∣∣ζ(x)
∣∣q2 dx

)1/q2[∫
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1
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∣∣p2
θ2
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p1−1
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θ2
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)
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]1/p1

+
(∫
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∣∣q1 dx

)1/q1[∫
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1
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Applying Hölder’s inequality again, we get

� C

[(∫
Ωε

∣∣Mε∇u(x) − ∇u(x)
∣∣p1 dx

) 1
p1−1

+
(∫

Ωε

∣∣Mε∇u(x) − ∇u(x)
∣∣p2 dx

) 1
p2−1

]1/p1

+ C

[(∫
Ωε

∣∣Mε∇u(x) − ∇u(x)
∣∣p1 dx

) 1
p1−1

+
(∫

Ωε

∣∣Mε∇u(x) − ∇u(x)
∣∣p2 dx

) 1
p2−1

]1/p2

+ CO(ε).

Finally, from the approximation property of Mε in Section 2.2.1, as ε → 0, we obtain (6.13).
Therefore, from Proposition 4.4 of [15] and (6.13) we have∫

Ω

ζ(x)

∫
Rn

φ(λ)dν i
x(λ)dx =

∫
Ω

ζ(x)

∫
Y

φ
(
χi(y)p

(
y,∇u(x)

))
dy dx

= lim
ε→0

∫
Ω

ζ(x)φ

(
χε

i (x)p

(
x

ε
, Mε(∇u)(x)

))
dx

� lim
ε→0

∫
Ω

ζ(x)φ
(
χε

i (x)∇uε(x)
)

dx,

for all φ ∈ C0(R
n) and for all ζ ∈ C∞

0 (Rn). �
The proof of Theorem 2.7 follows from Lemma 6.1 and Theorem 6.11 in [14].

7. Summary

In this paper we consider a composite material made from two materials with different power-law behavior. The ex-
ponent of the power law is different for each material and taken to be p1 in material one and p2 in material two with
2 � p1 < p2 < ∞. For this case we have introduced a corrector theory for the strong approximation of fields inside these
composites, see Theorem 2.6. The correctors are then used to provide lower bounds on the local singularity strength inside
micro-structured media. The bounds are multi-scale in nature and quantify the amplification of applied macroscopic fields
by the micro-structure, see Theorem 2.7. These results are shown to hold for finely mixed periodic dispersions of inclusions
and for layers. Future work seeks to extend the analysis to multi-phase power-law materials and for different regimes of
exponents p1 and p2.
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