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1. Introduction

In this article we consider boundary value problems associated with fields inside heterogeneous materials made from
two power-law materials. The geometry of the composite is periodic and is specified by the indicator function of the sets
occupied by each of the materials. The indicator functions of material one and two are denoted by x; and x», where
x1(¥y) =1 in material one and is zero outside and x2(¥) =1 — x1(¥). The constitutive law for the heterogeneous medium
is described by A:R" x R" — R",

Ay, &) =0 (y)IEIPY %, (11)

with o (y) = x1(¥)o1 + x2(¥)02, and p(y) = x1(¥)p1+ x2(¥)p2, periodic in y, with unit period cell Y = (0, 1)". This simple
constitutive model is used in the mathematical description of many physical phenomena including plasticity [17,18,20,10],
nonlinear dielectrics [9,8,12,21,22], and fluid flow [19,2]. We study the problem of periodic homogenization associated with
the solutions u¢ to the problems

—div(A(g, Vué)) —f onQ. uce W) (1.2)

where £2 is a bounded open subset of R", 2 < p; < p2, f € W 192(£), and 1/p; + 1/q2 = 1. The differential operator
appearing on the left-hand side of (1.2) is commonly referred to as the p¢(x)-Laplacian. For the case at hand, the exponents
p(x) and coefficients o (x) are taken to be simple functions. Because the level sets associated with these functions can
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be quite general and irregular they are referred to as rough exponents and coefficients. In this context all solutions are
understood in the usual weak sense [26].

One of the basic problems in homogenization theory is to understand the asymptotic behavior as € — 0, of the solutions
Ue to the problems (1.2). It was proved in [26] that {uc¢}e-o converges weakly in W1-P1(£2) to the solution u of the
homogenized problem

—div(b(Vu)) = f onQ, ue WP (), (1.3)

where the monotone map b : R" — R" (independent of f and §2) can be obtained by solving an auxiliary problem for the
operator (1.2) on a periodicity cell.

The notion of homogenization is intimately tied to the I"-convergence of a suitable family of energy functionals I as
€ — 0 [5,26]. Here the connection is natural in that the family of boundary value problems (1.3) corresponds to the Euler
equations of the associated energy functionals I and the solutions u, are their minimizers. The homogenized solution is
precisely the minimizer of the I"-limit of the sequence {I¢}¢~0. The connections between I" limits and homogenization for
the power-law materials studied here can be found in [26]. The explicit formula for the I'-limit of the associated energy
functionals for layered materials was obtained recently in [16].

Homogenization theory relates the average behavior seen at large length scales to the underlying heterogeneous struc-
ture. It allows one to approximate {Vu¢}e~o in terms of Vu, where u is the solution of the homogenized problem (1.3). The
homogenization result given in [26] shows that the average of the error incurred in this approximation of Vu, decays to 0.

On the other hand it is well known [11] that the presence of large local fields either electric or mechanical often
precedes the onset of material failure. For composite materials the presence of the heterogeneity can amplify the applied
load and generate local fields with very high intensities. The goal of the analysis presented here is to develop tools for
quantifying the effect of load transfer between length scales inside heterogeneous media. In this article we provide methods
for quantitatively measuring the excursions of local fields generated by applied loads. We present a new corrector result
that delivers an approximation to Vu. up to an error that converges to zero strongly in the norm. Our approach delivers
strong approximations for the gradients inside each phase, see Section 2.2.1.

The strong approximations are used to develop new tools that provide lower bounds on the local gradient field intensity
inside micro-structured media. The bounds are expressed in terms of the LY norms of gradients of the solutions of the local
corrector problems. These results provide a lower bound on the amplification of the macroscopic (average) gradient field
by the micro-structure. The bounds are shown to hold for every q for which the gradient of the corrector is L9 integrable,
see Section 2.2.2. The critical values of q for which these moments diverge provide lower bounds on the L7 integrability
of the gradients Vu, when € is sufficiently small. In [13], similar lower bounds are established for field concentrations for
mixtures of linear electrical conductors in the context of two scale convergence.

The corrector results are presented for layered materials and for dispersions of inclusions embedded inside a host
medium. For the dispersed micro-structures the included material is taken to have the lower power-law exponent than
that of the host phase. For both of these cases it is shown that the homogenized solution lies in Wé’pz(.Q). We use this
higher order integrability to provide an algorithm for building correctors and construct a sequence of strong approximations
to the gradients inside each material, see Theorem 2.6. When the host phase has a lower power-law exponent than the
included phase one can only conclude that the homogenized solution lies in Wé’p 1(£2) and the techniques developed here
do not apply.

The earlier work of [6] provides the corrector theory for homogenization of monotone operators that in our case applies
to composite materials made from constituents having the same power-law growth but with rough coefficients o (x). The
corrector theory for monotone operators with uniform power-law growth is developed further in [7], where it is used to
extend multi-scale finite element methods to nonlinear equations for stationary random media. Recent work considers the
homogenization of p¢(x)-Laplacian boundary value problems for smooth exponential functions p¢(x) uniformly converg-
ing to a limit function po(x) [1]. There the convergence of the family of solutions for these homogenization problems is
expressed in the topology of LPo®)(£2) [1].

The paper is organized as follows. In Section 2, we state the problem and formulate the main results. Section 3 contains
the proof of the properties of the homogenized operator. Section 4 is devoted to proving the higher order integrability of
the homogenized solution. Section 5 contains lemmas and integral inequalities for the correctors used to prove the main
results. Section 6 contains the proof of the main results.

2. Statement of the problem and main results
2.1. Notation

In this paper we consider two nonlinear power-law materials periodically distributed inside a domain £ c R". The
periodic mixture is described as follows. We introduce the unit period cell Y = (0,1)" of the micro-structure. Let F be
an open subset of Y of material one, with smooth boundary dF, such that F C Y. The function x;(y) =1 inside F and
0 outside and x2(y) =1 — x1(y). We extend xi1(y) and x»(y) by periodicity to R" and the e-periodic mixture inside 2
is described by the oscillatory characteristic functions x{(x) = x1(x/€) and x5 (x) = x2(x/€). Here we will consider the



450 S. Jimenez, R.P. Lipton /. Math. Anal. Appl. 372 (2010) 448-469

Y

Fig. 1. Unit cell: Dispersed micro-structure.
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Fig. 2. Unit cell: Layered material.

case where F is given by a simply connected inclusion embedded inside a host material (see Fig. 1). A distribution of such
inclusions is commonly referred to as a periodic dispersion of inclusions.

In this article we also consider layered materials. For this case the representative unit cell consists of a layer of material
one, denoted by Ri, sandwiched between layers of material two, denoted by R;. The interior boundary of Ry is denoted
by I'. Here x1(y) =1 for y € Ry and 0 in Ry, and x2(y) =1 — x1(y) (see Fig. 2).

On the unit cell Y, the constitutive law for the nonlinear material is given by (1.1) with exponents p; and p, satisfying
2 < p1 < p2. Their Holder conjugates are denoted by q» = p1/(p1 — 1) and qy = p2/(p2 — 1) respectively. For i =1, 2,
W;éf"(Y) denotes the set of all functions u € W1Pi(Y) with mean value zero that have the same trace on the opposite
faces of Y. Each function u € W;g,f (Y) can be extended by periodicity to a function of Wllo’cp RM).

The Euclidean norm and the scalar product in R" are denoted by |- | and (-,-), respectively. If A Cc R", |A| denotes the
Lebesgue measure and y(x) denotes its characteristic function.

The constitutive law for the e-periodic composite is described by A (x, &) = A(x/€, &), for every € > 0, for every x € £2,
and for every & e R".

A calculation shows [3] that there exist constants Cq,C, > 0 such that for almost every x € R" and for every & € R",
A satisfies the following:

(1) For all £ e R", A(-, &) is Y-periodic and Lebesgue measurable.

(2) |A(y,0)] =0 for all y € R".
(3) Continuity

Ay, &) — A, &)| < CilnWIE —&I(1+ &1+ 18D 2+ emiE —&l(1+1al+1&)7 7. @1)
(4) Monotonicity
(A, &) — Ay, £2), &1 — &) = G a W& — EIP' + xa)IE — &1P). (2.2)

2.2. Dirichlet boundary value problem

We shall consider the following Dirichlet boundary value problem

{ —div(Ae(x, Vue)) = f on 2, (2.3)

ue e WP (),

where f e W192(02).
The following homogenization result holds.

Theorem 2.1 (Homogenization theorem). (See [26].) As € — 0, the solutions u. of (2.3) converge weakly to u in W1-P1(£2), where u
is the solution of

—div(b(Vu))=f on g, (2.4)
uewyP (@) (2.5)
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and the function b : R" — R" is defined for all § € R" by

b&) = [ Ay p(v. £)dy. (26)
Y
where p : R" x R" — R" is defined by
p(y, &) =&+ Vue(y), (2.7)

where vy is the solution to the cell problem:

/(A(y,é +Vug), Vw)dy =0, foreveryw e W;éfl (),
J (2.8)

1,
Us € Wpet (V).
Remark 2.2. The following a priori bound is satisfied

sup(/)(16()<)]Vu€()<)|p1 dx—i—/)(2‘()<)|Vu€(x)|p2 dx) <C < oo, (2.9)
€>0
2 2

where C does not depend on €. The proof of this bound is given in Lemma 5.5.

Remark 2.3. The function b, defined in (2.6), satisfies the following properties for every &1, & € R™.

(1) Continuity: There exists a positive constant C; such that

[b(g1) —b(&)| < Cill& —Szlpllﬁ(l + &P + &Pt + 15112 + |§2|pz)%

pp—2

+ 161 —Ezlﬁ(1 + (&1 + 182171 + 161172 + |&2|P2) 2T (2.10)

(2) Monotonicity: There exists a positive constant C such that

(b&1) —b(&2). & —‘;‘z)2Fz(f)ﬂ(y)lp(y,&)—p(y,Sz)I”‘ cier/)cz(y)lp(y,&)—p(y,éz)l”2 dy)
Y Y

>0. (2.11)

Properties (2.10) and (2.11) are proved in Section 3.

Remark 2.4. Since the solution vz of (2.8) can be extended by periodicity to a function of Wllo’cp '(R™), then (2.8) is equivalent
to —div(A(y, & + Vue (¥))) =0 over D'(RY), i.e.,

—div(A(y, p(y,£))) =0 inD’(R") for every £ e R". (2.12)
Moreover, by (2.8), we have

J0.pw.0).p0.e)dy = [(40.p.£).8)dy = (bi6).). (213)

Y Y

For € > 0, define p. : R" x R" — R" by

pe(x,§)=p<g,s> =5+va<§>, (214)
where vg is the unique solution of (2.8). The functions p and p. are easily seen to have the following properties

p(-, &) is Y-periodic and pc(x, &) is e-periodic in x, (215)

/p(y, §)dy =&, (2.16)

Y

Pe.§)—~& inLP1(2;R")ase — 0, (2.17)
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p(y,0)=0 foralmostevery y, (2.18)
A<é,p€(-,§)) —b() inL%?(2;R")ase— 0. (2.19)

We now state the higher order integrability properties of the homogenized solution for periodic dispersions of inclusions
and layered micro-geometries.

Theorem 2.5. Given a periodic dispersion of inclusions or a layered material then the solution u of (2.4) belongs to Wé’pz (£2).
The proof of this theorem is given in Section 4.

2.2.1. Statement of the corrector theorem
We now describe the family of correctors that provide a strong approximation of the sequence {x/Vue}eso in the

LPi(£2, R™) norm. We denote the rescaled period cell with side length € > 0 by Ye and write Y;' =¢€i+Ye, where i € Z". In
what follows it is convenient to define the index set I = {i € Z": Y¢ C £2}. For ¢ € LP2(£2; R"), we define the local average
operator M, associated with the partition Y., i € Ic by

Diele Xyi (X)‘Y%| Jyiedy, ifxeU, YE,
0, ifxe 2\ U, Y
The family M, has the following properties:

Me (@) (x) = (2.20)

(1) For i =1,2, [Mc(9) — @l 1pi(@:rr) — 0 as € — 0 (see [23]).
(2) Mc(¢) — @ ae. on £2 (see [23]).
(3) From Jensen’s inequality we have [[M¢ (@) 1pi(2:rry < 19 l1pi (2;rny, for every ¢ € LP2(2;R" and i=1,2.

The strong approximation to the sequence {x Vue}e-o is given by the following corrector theorem.

Theorem 2.6 (Corrector theorem). Let f € W ~192(£2), let u, be the solutions to the problem (2.3), and let u be the solution to problem
(2.4). Then, for periodic dispersions of inclusions and for layered materials, we have

/ | X£ ®)pe (X, Mc(Vu) (%)) — xf (%) Ve ()P dx — 0, (2.21)
2

ase — 0,fori=1,2.
The proof of Theorem 2.6 is given in Section 6.1.

2.2.2. Lower bounds on the local amplification of the macroscopic field

We display lower bounds on the LY norm of the gradient fields inside each material that are given in terms of the
correctors presented in Theorem 2.6. We begin by presenting a general lower bound that holds for the composition of the
sequence {X; Viel}e-o With any non-negative Carathéodory function. Recall that ¢ : £2 x R" — R is a Carathéodory function
if ¥ (x,-) is continuous for almost every x € £2 and if ¥ (-, 1) is measurable in x for every A € R". The lower bound on the
sequence obtained by the composition of ¥ (x, ) with x;(x)Vue(x) is given by

Theorem 2.7. For all Carathéodory functions v > 0 and measurable sets D C $2 we have

/ / V(% xi»p(y. Vu(X)))dde<li§nJgf / V(X X ) Vue(x)) dx.
DY D

If the sequence {y (x, x{ (X) Ve (X))}e>0 is weakly convergent in L1($2), then the inequality becomes an equality.
In particular, for ¥ (x, A) = |A|9 with q > 2, we have

//Xi(y)]p(y, Vu(x))|qdydx<limi(1)1f/ Xf(x)|Vu€(x)|qu. (2.22)
€—>
DY D

Theorem 2.7 together with (2.22) provide explicit lower bounds on the gradient field inside each material. It relates the
local excursions of the gradient inside each phase x Vue to the average gradient Vu through the multi-scale quantity given
by the corrector p(y, Vu(x)). It is clear from (2.22) that the LI(Y x £2;R") integrability of p(y, Vu(x)) provides a lower
bound on the L9(£2; R") integrability of Vu,.

The proof of Theorem 2.7 is given in Section 6.2.
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3. Properties of the homogenized operator b

In this section, we prove properties (2.10) and (2.11) of the homogenized operator b. In the rest of the paper, the letter
C will represent a generic positive constant independent of €, and it can take different values.

3.1. Proofof(2.11)

Using (2.8) and (2.2), we have

(b&2) —b1). &2 —&1) = | (A(y. p(v.&2)) — A(y, p(¥.£1)), P(¥. &2) — p(¥. &) dy

~—

> C(/ X WIpy.6) = po, &)[" dy + / x2W|py.€) - p(y. 6| dy)
Y Y
> 0.

3.2. Proofof (2.10)

By (2.1), Holder's inequality, and (2.2) we have

(&) —b(&)| </1A(y,p(y,s1>) Ay, p(y.£2)|dy
Y

1

C(/X1(y>|p(y,s1>—p(y,sz)!’“dy) <f)<1<y> +|p<y,sl>\+|p(y,sz)!)q“‘”‘2)dy>qz
Y

Y

+C</)<z(y)|p(y,$1)—p(y,%‘z)l”2 y)
Y

1

x (/ XN+ |pG. )| + p(y. &))" P27 dy) "

Y
1

< C[f(A(y, P(y.&)) — A(Y. P(¥.£2)). P(¥. &1) — P(¥. &2)) dy} K

1

Y
x [/)ﬁ(y) + P, 0|+ |p(y, &) 2P Y dy]

Y
1

/ (y.p(v.81)) — (y,p(y,sz)),p(y,&)—p(y,sz))dy] "

Y

+C

| —

1

x [/Xz(y)(l +p.en|+|p(y, &) 7? dy] " (3.1)
Y

Using (3.1), (2.8), (2.6), the Cauchy-Schwarz inequality, Lemma 5.1, and Young’s inequality we obtain

§P1 §p2
< C[(— + —) b(51) — b(&)]

p
P12
+‘3—q2|$1 szw T (1 4 |E1[P1 4 (&P + |£11P2 4 [&|P2) 17T
q2
-2
+3““|$1 17T (14 (61171 + 62171 + 61172 + [£1P2) 7> 1}
q1 '

Rearranging the terms in (3.1), and taking § small enough we obtain (2.10).
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4. Higher order integrability of the homogenized solution

In this section we display higher integrability results for the field gradients inside dispersed micro-structures and layered
materials. For dispersions of inclusions, the included material is taken to have a lower power-law exponent than that of the
host phase. For both of these cases it is shown that the homogenized solution lies in Wé’pz (£2). In the following sections
we will apply these facts to establish strong approximations for the sequences {x; Vue}e~o in LP2(£2,R"). The approach
taken here is variational and uses the homogenized Lagrangian associated with b(¢) defined in (2.6). The integrability of the
homogenized solution u of (2.4) is determined by the growth of the homogenized Lagrangian with respect to its argument.

To proceed we introduce the local Lagrangian associated with power-law composites. The Lagrangian corresponding to
the problem studied here is given by

Fx.6) =q)E[PY,  with q(x) = % X100 + ‘;—jxm, (41)

where £ e R" and x € £2 C R". Here ng(x, &)= A(x, &), where A(x, &) is given by (1.1).
We consider the rescaled Lagrangian

Fe.8) = f(f, s) — T ycwlePt + 2 s wle P, (4.2)
€ D1 D2

where x(x) = xi(x/€),i=1,2, £ €R", and x € 2 CR".
The Dirichlet problem given by (2.3) is associated with the variational problem given by

ES(f)= mf {/fe(x vu)dx — (f, u)} (4.3)
uew, 1P gy
with f e W~192(£). Here (2.3) is the Euler equation for (4.3). However, we also consider
ES(f)= mf {/fe(x vVu)dx — (f,u } (4.4)
uew,’ P2 )

with f e W=192(82) (see [24]). Here (-,-) is the duality pairing between Wé'pl (£2) and W—1-92(£).
From [26], we have lim¢_.0 E{ = E;, for i =1, 2, where

Ei= mf {/f Vu(x) dx— (f,u } (4.5)

ueW, p‘(.Q)

In (4.5), },.(g) is given by

Fi) = / Fy.&+vv(n)dy (46)
v in Wper‘(Y)
and satisfies
—co+crlElP < Fi(®) < CIEP? +co. (47)

In general (see [25]), Lavrentiev phenomenon can occur and E; < E. However, for periodic dispersed and layered micro-
structures, no Lavrentiev phenomenon occurs and we have the following homogenization theorem.

Theorem 4.1. For periodic dispersed and layered micro-structures, the homogenized Dirichlet problems satisfy E1 = E,, where f =
]‘1 = fz and cy 4 c1|€|P2 < f(é). Moreover, ng(é) = b(&), where b is the homogenized operator (2.6).

Proof. Theorem 4.1 has been proved for dispersed periodic media in [26]. We prove Theorem 4.1 for layers following the
steps outlined in [26].

We first show that f = f 1 = f holds for layered media. Then we show that the homogenized Lagrangian ¥ satisfies the
estimate given by

—co+c1lEP? < F() <alEP + ¢ (438)

with ¢cp >0, and cq,c2 > 0.
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We introduce the space of functions W};pz(Rz) that belong to W1-P2(R;) and are periodic on 9R; N Y.
To prove that f’1 = fz, it suffices to show that for every v € W;‘;_,‘.’1 (Y) satisfying

/f(y,g +Vv(y))dy < oo (4.9)
Y

there exists a sequence v, € W;g,f 2(Y) such that

élig})ff(y,s+vVe<y))dy=fJ‘(y,s+w<y>)dy.
Y Y

Let v € Wgéf‘ (Y) that satisfies (4.9). From (4.1) we see that the restriction of v to R, denoted by R(v), belongs to

Wl’pz(Rz). Now we extend R(v) to Ry so that the extension v belongs to W;éfz(Y) and v(y) = R(v(y)) = v(y) on Rs. For
future reference we denote the left component of Ry by Ry | and its boundary with Ry by It and similarly denote the right
component of Ry by R g with boundary I'r. We extend R(v) by reflection across each component of I" = I} U I'g into Rj.
Denote each of these reflections by v; and vg. Next introduce the smooth functions ¢; and ¢g, with ¢;(y) =1 for y € Ry |
and compact support in Ry and g =1 for y € Ry g with compact support in Ry. Here the support sets of ¢; and ¢ do
not intersect. The extension is given by

@r(Y)VR(Y), Y in supp{¢r},
v(y), yin R;.

Set z=v — 7. It is clear that ze W1-P1(Ry), is periodic on opposite faces of Y N dR1, zero on I" and we write

3 eL(y)vi(y), yin suppigr},
v(y) = {

/f(y,é+Vv(y))dy=[fz(s+Vv(y))dy+ff1($+V\7(y)+Vz(y))dy,
Y Ry Ry

where fi(§) = 2P and f>(£) = 2P
We can choose a sequence {z¢}e~o € C5°(R1) such that ze vanishes in R; and z¢ — z in WLP1(Ry).
Define v, € W;éfz(Y) by

v in Ry,
Ve =1 ~ .
V+2zc InRj.

Since v¢ — v in W;;_fl (Y), we see that
Ell_rg%/ fy. 6 +Vvey))dy = e@})(/ f(E+Vv(y)dy + f f1(E+VV(y) + Vze (y))dy)
Y R Rq

= f F(y.& +Vv(y)dy.
Y

Therefore f = fl = fz for layered media.
We establish (4.8) by introducing the convex conjugate of f. We denote the convex dual of f,-(g) by §1(§)3 ie., éi(f) =
supy cgrn{é - A — f,-()»)}. It is easily verified (see [24]) that

B)= inf f (. &+ w(y)dy (410)
w in Sol%i (Y)
and
—co+ £ < &i(5) < SBIE% +co. (411)

Here Sol% (Y) are the solenoidal vector fields belonging to L% (Y, R") and having mean value zero
Sol%(Y) ={w e L9 (Y;R"): divw =0, w - n anti-periodic}.

We will show that é: §1 = §2 satisfies <é(éf) < ¢2]€|7 + ¢4, and apply duality to recover f’(é) > C31E1P2 + cf.
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To get the upper bound on § we use the following lemma.
Lemma 4.2. There exists T with divt = 0in Y, such that t - n is anti-periodic on the boundary of Y, T = —& in Ry, and

/Ir(y)lq1 dy < Clg|7.
Y

Proof. Let the function ¢ € Wi‘pz(Rz) be the solution of

V@|V|P~2 - nis anti-periodic  on dR; N AY,

Ap,p=0 in Ry,

(VoIVelP2=2 .n)|, = (=& -n)l; onT,
where the subscript 1 indicates the trace on the Ry side of I and 2 indicates the trace on the R, side of I'. The Neumann
problem given above is the stationarity condition for the energy fRz |V |P2dx — fr ¢& - ndS when minimized over all

¢ e Wl‘pz(Rz). The solution of the Neumann problem is unique up to a constant. Here the anti-periodic boundary condition
on V¢|V@|P~2 .n is the natural boundary condition for the problem.
Now we define 7 according to

= _éf in R],
~ | VelVel? inR,
and it follows that
qQ in Ry,
g =] G . n Ri (412)
[(Vo|Ve[P27%)7]2 = (|Ve[P2~ )9 = |Vg|P2  in R,.

Then, for v € w.lP2(Ry) we have

/|V<p|”2—2v§o~wdy=fw|w|”z—2w~nds+ f VIVQIP 2V - nds

Ry r daR,NAY
:—/I/IS-TldS:—/VI/I-Edy. (413)
r Ry
Set ¢ = ¢ in (4.13) and an application of Hélder’s inequality gives
/\pr(y)!pz dy < / &7 dy. (414)
Ry Ry

Therefore, using (4.12) and (4.14), we have

f\r(y)\‘“ dyzf\r(y)\‘“ dy+f!r(y)\‘“ dy
Y Rq Ry

=[ £19t dy +f|w><y>}”2 dy<ClEf. o
Ri Ry

Taking § to be the conjugate of f and choosing 7 in Sol?(Y) as in Lemma 4.2, we obtain

g&) = inf /é(y,s+r>dy</§(y,s+r>dy

7 in Sol91(Y)
Y Y
</é(y,o)dy+/é(y,€+f)dy<ﬁ+Cz/IS+IIQ1 dy <c1 +c2l€|T,
Ry Ry R>

and the left-hand inequality in (4.8) follows from duality.
This concludes the proof of Theorem 4.1. O

Collecting results we now prove Theorem 2.5. Indeed the minimizer of E; is precisely the solution u of (2.4) and (2.5).
Theorem 4.1 establishes the coercivity of E; over Wé’pz(.Q), thus the solution u lies in Wé”’z (£2).
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5. Some useful lemmas and estimates

In this section we state and prove a priori bounds and convergence properties for the sequences pe¢ defined in (2.14),
Ve, and Ae¢ (X, pe(x, Vue)) that are used in the proof of the main results of this paper.

Lemma 5.1. For every £ € R" we have

/X1<y>|p<y, )P dy + / P 5P dy < C(1+ £P16; + ¢ 1265), (51)
Y Y

and by a change of variables, we obtain
f)(f()c)lpe(x,S)I”1 dX+[X2€(X)|p6(xs§)|pz dx < C(1+[§1P101 + |£[P262)|Yel. (5.2)
Ye Ye

Proof. Let & € R". By (2.2) we have that
(A(y.pr.). p(v. ) = CO WP O + 2Py, ©)]7).

Integrating both sides over Y, using (2.1), and Young’s inequality, we get

/X1(y)|p(y,$)}p‘ dy+/Xz(y)lp(y,é)l”2 dy

Y Y

pig p2g
< C[(S‘”@] +576) + (E' gy 2) + (8% +8q1)</)<1(y)|p(y,é)\’” dy+sz(y)!p(y,é)|p2 dy)].
Y Y

§P1 §p2
Doing some algebraic manipulations, we obtain

(1 —C(6"2+6‘“))</)(1(y)|p(y,$)|p1 clyJr/)(z(y)ha(y,S)I’”2 dy)

Y Y
< C[(8%261 4 8T162) 4 (7P IEIP 61 + 87 P2|5(P26,) ]

On choosing an appropriate 8, we finally obtain (5.1). O
Lemma 5.2. For every &1, & € R" we have

/m WP — p(y. &) [P dy + / K2 |p(y.ED) — p(y. E)|P dy

Y Y
1

p1-2 P
< C[(1+1811P1601 + 1£11P262 + 162|101 + |£21P20) P17 &1 — | P10

pp—2

P2 L
+ (1416117161 + 1811P265 + 1621P161 + |62|P262) P27 |61 — | 72710, ] (5.3)

and by doing a change of variables, we obtain

f)(f()c)lpe(x,éil)—pe(x,é-‘z)lp1 dx+/x§(><)|pe(x,$1)—pe(x,éz)|p2dx

Ye Ye
pi-2 I
SC[(1+ [&11P161 + 6117202 + 16217161 + |£2|P2602) 17T &1 — &2 P16
pp-2 Lo
+ (1416117101 + [E11P262 + 16217101 + |£21P262) 27T &1 — 2| P27 6,7 1]|Y6|« (54)

Proof. By (2.2), (2.8), and (2.1) we have that

/)o W|py,60) —ply, e[ dy + / X2N|p, &) — p(y, &) [P dy

Y Y

< c/|A(y,p<y,sl)) — Ay, p(y. E)|IE1 — &2l dy
Y
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< C[/ x|, &) —p.&)|(1+ p(. &)| + [p(v. £ |)7 11 — &2l dy

Y

+/Xz(y)|p(y,$1) —p(.&)|(1+ [p. &0 + |p(v. &))" 2l —Szldy]-

Y

Using Holder’s inequality in the first term with r; = p1/(p1 — 2), 2 = p1, '3 = p1, and in the second term with s =
p2/(p2 —2), S2 = p2, S3 = p2, and using Lemma 5.1, we obtain

P12

< C[(l + 16117161 + 16117262 + 162171 61 + 1621P262) 71

X |&1 —:§2|91ﬂ (/Xl(}’)|p(%§1) - p(y.&)|" dY) "
Y
pp—2

+ (1+1&117161 + 16117262 + 1621161 + |62/P262) P2

N 1
X |&1 — £216,” (/XZ(J’)\P(J’,&) - p(y,&)|" dY> pz]-
Y

By Young's inequality, we get

(p1-2)9p 92

C[a—qza +1E1IP101 + 6117262 + 1217101 + [£1P20) P &1 — £|26]"
q2
n 8P [, xaWIp(y. §1) — p(y, &2)IP1 dy N 8P2 [, xaWIp(y. &) — p(y, &2)|P2 dy
P1 P2

(P2-2)q1 41

N 87N (1 4 1&11P101 + 1£11P262 + |621P161 + |£21P262) P2 |&1 — Ezl’“%pz}
a1 ’

Straightforward algebraic manipulation delivers

X

ka(fm(y)lp(y,&)—p(y,éz)l’” aler/Xz(y)lp(y,sl)—1o(y,$z)|”2 dy)
Y Y

p1-2

p1-2 p
C[5_q2(1 + 1E11P1601 + [£11P2602 + |E2|P161 + |E2]P202) P17 &1 — &;| P11 6, !
q2

X

pp-2 . I
n ST+ &1 |P161 + |£11P2602 + |£2|P161 + [E2|P2602) P27T [&1 — &2 P21 6,2 ! }
a1 '

where ks = min{(1 — Cg%), 1- Cg%)}.
The result follows on choosing § small enough so that ks is positive. 0O

Lemma 5.3. Let ¢ be such that

sup[/xf(X)W(X)!p] dX+/x§(X)|¢>(X)|p2dX] < o0,
2 2

€>0
and let ¥ be a simple function of the form

W) =Y 1jxe;®, (5.5)

j=0

withn; e R"\ {0}, 2; CC £, 1982 =0, .QjﬂQk=(7Jforj7ékandj,k=1,...,m;andsetn0=0and90=Q\U’}‘=] £2j. Then
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limsgp(fxf(X)lpe(x, Mep()) — pe (x, ¥ ()™ dX+[x§(X)|pe(x, Mep(X)) — pe (x, ¥ ()" dx)
2 2

€e—0

<limsup CZ[(mexf(xw(x)W dx+/x§(x>|so(x>|"2 dx
2 2

pi=2

€ P € D2 piﬁ € Di pllj
+/X1 ®|¥ @ dx+/xz(x)\lp(x)\ dx) (/Xi ®]px) — ¥ X)| dx) }
2 2 2

Proof. Let ¥ be of the form (5.5). For every € > 0, let us denote Q¢ =, Y_; and for j=0,1,2,...,m, we set
=lieleYice;) and Ji=liele:YinQj#0, YI\2;+#0).

Furthermore, Eé = Uielj Y_é Fg = Uie]j Y_é and as € — 0, we have |Fg| — 0.
€ €
Set

§e = i /w(y)dy.

For € sufficiently small £2; (j # 0) is contained in £2..
From (5.5), (2.20), using the fact that £2; C El UF!, Lemma 5.2, and Holder’s inequality it follows that

/xf(x)lpe(x, Meg) — pe(x, ¥)|! dx+/x§(x>|pe(x, Meg) — pe(x, ¥)|P? dx
2 2

C[(I-QIJr/xf(X)IIVIew—</J|”1 der/xf(X)I(pI”1 dx+/x§(X)|Me<ﬂ—s0|”2 dx
2 2 2
P12

+/)(5()<)|<p(x)|"2a!x+/xf(x)lsl/(x)l”1 dx+/x§(x)|u/(x)|”2dx> e
2 2

—1

p
X( X1 OIMeg — P! dx+/xf(x)|<o—¢f|"1 dx) '

2
+(|9|+ X: @) |Mep — P! dX+fxf(X)lsol”1 dx+fx§(X)lMe¢—sol”2dx
2 2
py=2
€ p2 € p1 € p2 p2-1
+ [ 5@ |Zdx+ | xf@|e®|dx+ | x5 @) |¥ x| dx

2 2

1
x /x(x)uvleco ¢|P2dx+/x2(x)|<p W|"2dx)2 ]+CZ[<
2 2

fo

A
Fi i€l

> Xy E —1;

Fl Fl

+ |Ff|+ yME<p(x)[”‘91dx+/\1wego(x)|"292dx+|nj|P191|F£|+|nj|P292]Fg\>

F

" ) ”].

2
x (/\Mao(x)\‘”e] dx + |FL| + 1nj1P161|FL| + n;IP26,|F.| +f\Me<o(x>\"292dx)

x /Qz‘ZXyz(X)SE nj

icJ!

459

(5.6)

1
p1 -1
dx

(5.7)
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Since |3£2j| =0 for j # 0, we have that |Fg| —~0ase—0, forevery j=0,1,2,...,m
By property (1) of M mentioned in Section 2.2.1, we have

/Xf(x)|M€<p(x)—(p(x)|pidx—>0, ase — 0, fori=1,2.
2

Therefore, taking limsup as € — 0 in (5.7), we obtain (5.6). O

Lemma 5.4. If the micro-structure is dispersed or layered, we have that

sup{/xf(x)|p5(x, MGVu(x))|pidx} <C<oo, fori=1,2.

e>0

Proof. Using (2.20), we have

/)(16()c)|p€(x,MEVu(x))}p1 dx+/x26(x)|pé(x, MeVu(x))|P? dx

2 2
—Z[/xl ®)|pe (x, €)™ dx+/x§(><)|pe(x,$§)|p2 dx]
iele Ye Yé
<CY (14 &7 01 + €] 02) Y]
iele
=C Y (Yl + &P on|vi| + |8l 6a] YL])
iele

S C(I121+ IVull, o) + IVUllg, o) < oo,

where the last three inequalities follow from Lemma 5.1, Jensen’s inequality, and Theorem 2.5. O

Lemma 5.5. Let u, be the solution to (2.3). Then (2.9) holds.

Proof. Evaluating u. in the weak formulation for (2.3), applying Holder’s inequality, and since f € W~192(£2), we obtain

/(Ae(x, Vue),Vue)dx=<71/)(f(X)quelp1 dx+62fx§(x)|Vu€|p2 dx
2 2 2

1 1
= (f.uc) <c[(/xf(x>|we|m dx) " (/XE(X)IVuel”Z dx) }
2 2

Applying Young’s inequality to the last term in (5.8), we obtain

alfxf(quam dX+02/X2€(X)|VUe|p2 dx
2 2

§h1 5742 §h2 s
<C[—/ i X5 ()| Vue|P2 dx + }
D1 qz D2
Q Q

q1

By rearranging the terms in (5.9), one gets

sh sP2 §—92  §—q
<O‘1 —C—)/)(f(x)WuElp1 dx+<02—C—)/X§(x)|VuE|p2dx< + .
D1 s D2 s q2

q1

Therefore, by choosing § small enough so that min{o; — C‘%‘, oy — C%z} is positive, one obtains

/xf(x)|Vu5(x)|p] dx+/x2€(x)|Vu€(x)|p2dx§C. O
2 2

(5.8)

(5.9)
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Lemma 5.6. For all j =0, ..., m, we have that fQ]_ [(Ae(X, pe(x, M), Vue(x))| dx and fﬂj [(Ae (X, Vue(X)), pe(x, nj))| dx are uni-
formly bounded with respect to €.

Proof. Using Holder's inequality, (2.1), and (2.9), we obtain

/ |(Ac (%, pe(x, n))), Vite () | dx

2j

</|Ae(x, Pe(x,m))||Vue ()| dx
2

1 1

<C[</Xf(x)(1 + [pex, np])™ dx)"2 + (/)G(x)(l + |pe(x, ’7j)|)pzdx) ‘11:|

2j 2j
< C, where C does not depend on €.

The proof of the uniform boundedness of fﬂ,— [(Ae(X, Vue (), pe(x, 1j))| dx follows in the same manner. O

Lemma 5.7. As € — 0, up to a subsequence, (A¢(-, pe(-, 1)), Vue(-)) converges weakly to a function g; € Ll(.Qj; R), for all j =
0,...,m. In a similar way, up to a subsequence, (Ac(-, Vue(-)), pe(-, 1j)) converges weakly to a function h; € L‘(.Qj; R), for all
j=0,...,m.

Proof. We prove the first statement of the lemma, the second statement follows in a similar way. The lemma follows from
the Dunford-Pettis theorem (see [4]). To apply this theorem we establish the following conditions:

(1) fﬂj [(Ae (X, pe(x, 7)), Vue(x))|dx is uniformly bounded with respect to €.
(2) Forall j=0,...,m, (Ae(-, pe (-, 17j)), Vue(+)) is equiintegrable.

The first condition is proved in Lemma 5.6. For the second condition, we have that xf()|Ae(:, pe(-,n;))|%? and

X5 (1Ac (-, pe(-, )T are equiintegrable (see for example Theorem 1.5 of [4]).
By (2.9), for any E C §2, we have

mia)éisup{<fx,-€(x)]Vu€(x)]p"dx>Fi}} <C.
=121 e>0
E

Let o > 0 arbitrary and choose 1 > 0 and «; > 0 such that oz]l/qz + a;/‘” <a/C.
For o1 and o, there exist A(x1) > 0 and A(oz) > 0 such that for every E C 2 with |E| < min{A(c1), A(c2)},

/xf(X)IAe(x, pex,1j))|? dx <oy and fxf(X)lAe (%, pe(x, n)|" dx < ata.
E E

Take A = A(ar) = min{A(c¢1), A(cx2)}. Then, for all E C £2 with |E| < A(«), we have

/|(Ae(x, Pe(x, 1)), Vue(x))| dx < f}Ae(x, Pe(x. n))|| Ve ®)| dx
E

E

< (/XF(X)IAs(x, pe(x.np)|® dx) " </XF(X)|VUE(X)|"’ dX>pl
E E

1 1
- (/XE(X)IAe(x, pex,n)|" dX> " (/XS(X)|Vue(X)|p2 dX> ”
E E

< C(a:/th +a;/Ql) <a.

for every a > 0, and so (A¢(:, pe (-, 1j)), Vue(+)) is equiintegrable. O
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6. Proof of the main results
6.1. Proof of the corrector theorem

We are now in the position to give the proof of Theorem 2.6.

Proof of Theorem 2.6. Let u, € Wé’p 1(£2) the solutions of (2.3). By (2.2), we have that

/[xf(X)Ipe (% McVu®) — Ve )[”" + x5 0| pe (x. Me Vu(x)) — Vue ()| ] dx
2

< C/(AE (%, Pe(x, MeVu(x))) — Ae (X, Vue (X)), pe(x, Me Vu(x)) — Ve (x)) dx.
2

To prove Theorem 2.6, we show that

/(Ae (%, Pe(x, MeVu(x))) — Ae (X, Ve (X)), Pe (x, Me Vu(x)) — Ve (x)) dx
2

=/(A6(x, Pe(X, Me V1)), pe (X, M V) dx—f(Ae (X, e (X, MeVU)), Vue) dx
2 2

- /(Ae(x, Vie), pe(x, M Vu)) dx + /(Ae(x, Vue), Vue) dx
2 2

goes to 0, as € — 0. This is done in four steps.
In what follows, we use the following notation

: 1
£l =— /Vudx.
< i)
Ye

Step 1. Let us prove that

/(A€ (X, Pe (X, Me V1)), pe (X, M Vu)) dx — /(b(Vu), Vu) dx
ko) 2

as € — 0.

Proof. From (2.13) and (2.20), we obtain

/(A6 (x, Pe (X, M Vu(x))), pe(x, M Vu(x))) dx
2

= /(Ae (X, e (x, M Vu(x))), pe (x, Me Vu(x))) dx

B ((Eolz)) o))
=G"Z/(A(y,p(ys§ei))vP(y,'fei))dy
=3 [y olo(e) &) dx

= / (b(MeVu(x)), Me Vu(x)) dx.
2

(6.1)
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By (2.10), the definition of g1, and Hélder’s inequality we have

/‘b(MGVu(x)) —b(Vu)|" dx
2

1
<p2—1)(1:1—1)j|

< C[(/]MeVu(s) — vu(s)|” dx) 2t | (/.|M6Vu(x) — vu)|” dx)
2 2

From property (1) of M¢, we obtain that

b(M¢Vu) — b(Vu) in L9 (2;R"), ase — 0. (6.2)

Now, (6.1) follows from (6.2) since M Vu — Vu in LP2(§2; R"), so

/(Ae(x, Pe(x, McVu(x))), pe(x, Me Vu(x))) dx
2

:/.(b(MGVu(x)),MGVu(x))dx—> /(b(Vu(x)),Vu(x)) dx,
2 2

ase—0. O

Step 2. We now show that

/ (Ae(x, pe (%, MeVu(x))), Ve (x)) dx — / (b(Vu)), Vu(x)) dx (6.3)
2 2

as € — 0.

Proof. Let § > 0. From Theorem 2.5 we have Vu € LP2(£2; R") and there exists a simple function ¥ satisfying the assump-
tions of Lemma 5.3 such that
||Vl1 — ‘I’HLPz(Q;Rn) <6. (64)

Let us write

/(A6 (%, Pe(x, McVu(x))), Vue (x)) dx

2
= /(A6 (x, pe(x,¥)), Vue)dx + /(Ag(x, Pe(X, McVU)) — Ac(X, pe(x,¥)), V) dx.
2 2
We first show that

/(A6 (% Pe(x, ¥ (%)), Ve (x)) dx — /(b(ll/(x)), Vu(x))dx, ase— 0.
2 2
We have

m
[(AE (% Pe(x, ¥ (%)), Ve (x)) dx = Z /(AE (X, e (x,m))), Ve (x)) dx.
1?) j=0g;
Now from (2.19), we have that Ac(-, pe(-, nj)) = b(n;) € L92(£2;; R"), and by (2.12), fﬂj (Ac(X, pe (X, 1)), Vo (x))dx =0,

for ¢ € Wé'pl (£2)).
Take @ =due, with § € C°(£2;) to get

Ozf(Ae(x, Pe(x, 1)), (Vé)ue)dx+f(Ae(x, Pe(x, 1)), (Vue)d) dx.

2j 2
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Taking the limit as € — 0, and using the fact that u€ — u in Wé'pl (£2) and (2.19), we have by Lemma 5.7 that
f 80800 dx = lim / (Ac(x, pex, 1)), (Vue)s) dx = f (b)), (Vu)s) dx.

2j 2 2

Therefore, we may conclude that g; = (b(n;), Vu), so

Z/(Ae(x, pe(®, 1)), Vite (x)) dx — » /(b(nj),Vu(x))dx, ase — 0.

i—0 i=0
J 2; J 2;
Thus, we get

f(Ae (x, Pe (%, ¥ (1)), Vue(x)) dx — /(b(l]/(x)), Vu(x))dx, ase— 0.
2

2

On the other hand, let us estimate

f(Ae (%, Pe (X, M Vu(x))) — Ac (X, e (x, ¥ (%)), Ve (x)) dx.
2

By (2.1) and Hélder’s inequality we obtain

' f (Ac(x, pe (X, Mc Vu(x))) — Ac(x, pe (x, W (%)), Vue (x)) dx

1 1

Pr B
< C(/xf(x)lpe(x, M Vi) — pe(x, w)|™ dX> <fxf(X)|Vue|"‘ dX>
2 2

p1—2

x (/xf(X)(l + |[pex Mc VW) |[P' + | pe(x, W)I’”)dX> "
2

1 1
€ P2 P2 € P2 P2
+C[ | x5 |pe(x, McVu) — pe(x, )| dx X5 (X)|Vue|P? dx
2 2

P2
X (/Xze(x)(1+|pg(x, McVu)|” + [pe(x, q/)|"2)dx> " (6.5)
2

Applying (2.9), (5.4), and Lemma 5.1 to the right-hand side of (6.5), we obtain

’/‘(A€ (X, Pe (%, McVu(x))) — Ac(x, pe (X, ¥ (%)), Ve (%)) dx

1
< C[(/XF(X)}pe(x, MeVu(x)) — pe (x, ¥ ()| dx) "
2
1
P
+ (/XE(X)Ipe(x, MeVu(x) — pe(x, ¥ (%)) [ dX> 2}. (6.6)
2

Applying Lemma 5.3 and (6.4) to (6.6), we discover that

limsup
e—0

/ (Ae(x, pe(x, McVu(x))) — Ae(x, pe (x, W (%)), Vue (x)) dx

< C(57 4 5%) 71 4 (57 4 8%)73 ], (6.7)

where C is independent of §. Since § is arbitrary we conclude that the limit on the left-hand side of (6.7) is equal to O.
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Finally, using the continuity of b and Hélder’s inequality we obtain

1

@ @1
<C[87mT P21 |,

‘ / (b(Vu(x) —b(¥ ), Vu(x) dx

where C does not depend on §.
Step 2 is proved noticing that § can be taken arbitrarily small. O

Step 3. We will show that

/(Ae(x, Ve (), pe (x, Me Vu(x))) dx — /(b(Vu(x)),Vu(x)) dx (6.8)
2 2
as € — 0.

Proof. Let § > 0. As in the proof of Step 2, assume ¥ is a simple function satisfying assumptions of Lemma 5.3 and such
that IVu — | p2 (2:Rm) < d.
Let us write

/(A6 (x. Vue(®)), pe (x, Me Vu(x))) dx

2

= /(A6 (x, Vue(x)), pe (x, ¥ (x))) dx + /(Ae (%, Vue(®)), pe(x, Mc Vu(x)) — pe(x, ¥ (x))) dx.
2 2

We first show that

/(A6 (x, Vue(x)), pe (x, ¥ (%)) dx — /(b(Vu(x)), ¥ (x))dx.
2 2
We start by writing

/(Ae (X, VUG(X))’ pG(X* l]/(x))) dx = Z

f (Ac(x. Vue (). pe(x, 1)) dx.
2 ]=OQ].

From Lemma 5.7, up to a subsequence, (A¢(-, Vie), pe (-, 1j)) converges weakly to a function hj € L1(.Q]-; R), as € — 0.
By Theorem 2.1, we have A¢(-, Vue) — b(Vu) € L2(£2; R") and

—div(Ae(x, Vue)) = f = —div(b(Vu)).

From (2.17), pe satisfies pe(-, ;) — n; in LP1(£2;, RM).
Arguing as in Step 2, we find that (Ae¢(x, Vue (%)), pe(x,1j)) = (b(Vu(x)), nj) in D'(£2;), as € — 0.
Therefore, we may conclude that h; = (b(Vu), n;), and hence,

Z /(Ae (X, Vue(®)), pe(x,nj)) dx — Z /(b(Vu(x)), nj)dx, ase— 0.

j=09j j=0_(2j
Thus, we get
/(Ae(x, Vie(x)), pe (x, ¥ (x))) dx — /(b(Vu(x)), ¥ (x))dx, ase— 0.
2

Q
Moreover, applying Holder’s inequality and (2.1) we have

’/(AE (X, Vue(®)), pe (x, Me Vu(x)) — pe(x, ¥ (x))) dx
2

" 1

) n
SC[(/Xf(l + IVu€|)P1> (/xﬂpe(x, MeVu) — pe(x, ¥)|™! dx)
@ 2

+ (fxf(l +|Vue|)”2)

2=

1
(/XﬂpG("’MGV”)—pe(x,w)!pde)m]-
2
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As in the proof of Step 2 we see that

lim sup <C[(6qz+6‘“)ﬁ + (8% 4 8%2) P2 ],

e—0

/(Ae(x, Vie), pe(X, Me V) — pe(x, ¥)) dx

where C does not depend on §.
Hence, proceeding as in Step 2, we find that

lim sup
e—0

/(Ae(x, Vie), pe(x, MeVu)) dx — /(b(Vu), Vu) dx
2

1 1
< C((892 469) 71 4 (8% +87) 72 + 0+ 5[b(V) 10y . o))

where C is independent of §. Now since § is arbitrarily small, the proof of Step 3 is complete. O

Step 4. Finally, let us prove that

f (Ae(x, Vue(x)), Ve (x)) dx — / (b(Vu)), Vu(x))dx, ase — 0. (6.9)
2 2

Proof. Since

/(Ae(x, Vue), Vue) dx = (—div(Ae (x, Vue)), ue) = (f, ue), (6.10)
2
/(b(Vu), Vu) dx = (—div(b(Vu)), u) = (f, u), (6.11)
2

and ue — u in W1P1(£2), the result follows immediately. O
Finally, Theorem 2.6 follows from (6.1), (6.3), (6.8) and (6.9). O
6.2. Proof of the lower bound on the amplification of the macroscopic field by the micro-structure
The sequence {x; (x)Vue(x)}e>0 has a Young measure vi= {v};}xeg associated to it (see Theorem 6.2 and the discussion

following in [14]), for i =1, 2.
As a consequence of Theorem 2.6 proved in the previous section, we have that

as € — 0, which implies that the sequences

— 0,

X (x)p(f, MGNu)(x)) — XV ()
€ LPi (2;R")

{X,-G(X)pe, Me (Vu)(X))} and {x{f ®OVuc®}, _,

€>0

share the same Young measure (see Lemma 6.3 of [14]), for i =1, 2.
The next lemma identifies the Young measure v'.

Lemma 6.1. For all ¢ € Co(R") and for all ¢ € C5°(R™), we have

/ £ / ¢ 00 dvi () dx = / () / $(a(p(y. Vu))dydx. (612)
2 R" 2 Y

Proof. To prove (6.12), we will show that given ¢ € Co(R") and ¢ e Cg°(R"),

lim / c(x>¢<xf(x)p<§,Me(w)oo))dx: / ¢ / $(xi(»)p(y, Vu@))dy dx. (6.13)
2 2 Y
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We consider the difference

’ f c<x>¢<xi<§)p<§,Me(vw(x)))dx— / £ / ¢(xi(y)p(y. Vu(x))) dy dx
2 Y

Z/axw(xl( ) (g,sé))dx—/g(x)/as(xl»(y)p(y,Vu(x)))dydx
¢ Y

iele

+C|.Q\.Qe|. (6.14)

Note that the term C|£2 \ §2¢| goes to 0, as € — 0. Now set xL to be the center of Yé. On the first integral use the change
of variables x =x. + €y, where y belongs to Y, and since dx =€"dy, we get

Z/;(xw(x:( > ( $e>>d><—z /C(X)/¢> Xi(y)p(y. Vux)))dydx

iele iele

=) /: X +€y)p(xip(y. £))dy — Z/;<x>/¢(xi<y>p(y,Vu(x)))dydx.

iele icle vi
€

Applying Taylor’s expansion for ¢, we have

<z / £+ C0() [#(xiIP(v-6)) = $ (xi»P (v, Vu(v))|dy dx

iele Y'

+ CO(e)

< /Ic(x)|/|¢(xi(y)p(y, McVu(x))) — é(xi(y)p(y. Vu®))| dy dx
2, Y

+ CO(€).

Because of the uniform Lipschitz continuity of ¢, we get

(x)\/|p(y,M5Vu(x)) — p(y. Vu(x))| dy dx| + CO(e).
4

By Holder’s inequality twice and Lemma 5.2, we have

1/q2 .
<C=</‘§(X)’q2dx> [[(\Mevu(x)—Vu(x)|m91pm
¢ &

€
—2

x (14 |McVu®)|”'01 + |MeVux) |6 + |[Vu@) | 61 + |Vu(x)}”292)51_-1
1
+ [MeVu) — Vu)| 175_3192”2”
py-2 1/p1
x (14 [MeVu®)|"'61 + |MeVu(x) |26 + |[Vu) | 61 + |Vu(x)|”202)wl)dx}

1/q1 q 1
+ (/I{(x)lq‘ dx) |:/(|M5Vu(x) — Vu()|Te]
2

€
—2

x (14 [McVu®)|”'01 + |MeVux) |6 + |[Vu) | 61 + |Vu(x){p292)51_-1
1
+ [McVu®) — Vu)| 175_3192”2‘1

-2 1/p2
x (14 [MeVu®)|"61 + |MeVu(x) |76 + |[Vu@) | 61 + |Vu(x)|p2(92)£_*1)dx} }

+ CO(e).
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Applying Holder’s inequality again, we get

gc[(f\zwew(x) — Vu®)| 1a!x)

€

# 1/p1
P2
+ </|M6Vu(x)—Vu(x)| dx) ]

@
%
L
+C|:</]M5Vu(x)—Vu(x)‘pl dx) 1
@
# 1/p2
+ </|M€Vu(x)—Vu(x)|p2 dx) ] + CO(e).
@

Finally, from the approximation property of M in Section 2.2.1, as € — 0, we obtain (6.13).
Therefore, from Proposition 4.4 of [15] and (6.13) we have

/;“(x)/cb(k)dvi(k)dx:/((x)/qb(xf(y)p(y, Vu(x)))dy dx
2 R" 2 Y

=Eli_r}})/§(><)¢<xf(><)p<§,Me(Vu)(X)>)dx
2
< lim / @B (X %) Vie(x)) dx,
€—
2

for all ¢ € Co(R") and for all ¢ € C°(R™). O
The proof of Theorem 2.7 follows from Lemma 6.1 and Theorem 6.11 in [14].
7. Summary

In this paper we consider a composite material made from two materials with different power-law behavior. The ex-
ponent of the power law is different for each material and taken to be p; in material one and p, in material two with
2 < p1 < p2 < <. For this case we have introduced a corrector theory for the strong approximation of fields inside these
composites, see Theorem 2.6. The correctors are then used to provide lower bounds on the local singularity strength inside
micro-structured media. The bounds are multi-scale in nature and quantify the amplification of applied macroscopic fields
by the micro-structure, see Theorem 2.7. These results are shown to hold for finely mixed periodic dispersions of inclusions
and for layers. Future work seeks to extend the analysis to multi-phase power-law materials and for different regimes of
exponents p; and p».
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